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Abstract

The job of estimating the cost of a Department of Defense

production program often requires that the analyst use

learning curve theory to estimate recurring costs. A common

method for predicting these future costs is to fit the

following learning curve model to production lot data from

past analogous programs:

Y A * X**b

which in it's linear form reads:

ln(Y) = ln(A) + b*ln(X)

The parameters in the equation are, X, the unit number; Y,

the average unit cost of the lot for unit formulation or the

cumulative average cost per unit through unit X for

cumulative average formulation; A, the theoretical

first unit cost; and b, the slope coefficient.

This thesis involved research on the unit formulation

of learning curve theory. Both ordinary and weighted

least-squares fitting techniques were used. Comparisons

of the ordinary and weighted leas--squares techniques, true

lot midpoint and a heuristic lot midpoint, and bias and

unbiased results were made. Also investigated were the

assumptions of normality, and constant variance of the lot

data.

The data for these comparisons were simulated using the

SAS software system. First, unit data was generated using

vill



the log-linear learning curve equation shown aDove, using a

first unit cost of 25,000 and a learning curve slope of 80

percent, and a multiplicative, normally distributed error

not shown in the equation. Five hundred runs with lot size

of 210 each were generated for three different error terms.

The research showed that the heuristic lot plot point

biased the slope coefficient only when the weighted

least-squares best fit (WLSBF) technique was used, and

oiased the first unit cost parameter for both ordinary and

weighted least-squares. However, even when true lot

midpoint was substituted for the heuristic lot plot point

the first unit cost parameter remained biased, al. 'iough the

amount of the bias was reduced. This amount of bias present

is almost solely a function of the variance in the fitted

data. On the other h..ad, the bias in the slope coefficient

was eliminated when true lot midpoint was used.

The bias in the first unit cost was on the high side,

so an approximation to the bias reduction factor recommended

by Ilderton was used with excellent results.

The comparison between ordinary and weighted

least-squares provided mixed results when the bias was

present, however, when the bias was removed the WLSBF

technique was clearly superior.

Finally, the assumption of normality and constant

variance of the average unit cost data was shown to be

valid, although further research into both areas may be

warranted.

ix



AN ANALYSIS OF THE IMPACT OF LOG-LINEAR REGRESSION
ON THE ESTIMATED LEARNING CURVE PARAMETERS

I. Introduction

General Issue

All areas of the Department of Defense (DoD) are

charged with the responsibility to be faithful stewards of

the taxpayers money. However, in the area of weapon system

procurement, the taxpayers have heard all too many reports

of unfaithful stewardship. Reports of $600 dollar hammers,

coffee pots costing several thousand dollars apiece, and

noted scandals involving General Dynamics and General

Electric have plagued the DoD (6:39). In an article

entitled "Defense Procurement: A Job too important for

servicemen," the author claims that "cost estimates were

haywire, ... the services tried to get money for new weapons

by underestimating their costs..." (12:31). A small sample

of such reports includes a Time magazine article which

quoted a Pentagon analyst, as saying, "there is a systematic

tendency to underestimate future costs" (17:12), and an

article by Gansler who claims that a "typical DoD approach"

is to give "unrealistically low initial estimates (so that

the) program can get its nose in the budgetary tent,"

believing that once a program gets into the budget it will

remain in the budget (13:7). The result of such reports

seems to be, as stated in The AFSC Cost Estimating Handbook,
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"that the entire aquisition process now revolves around and

focuses on the cost (estimate) of an item" (3:1-2).

Accurate cost estimating is essential to avoid these DoD

"horror stories", and to allow for proper management and

control decisions to be made throughout a weapon system's

life cycle. But in order to obtain more accurate estimates,

current techniques which have in part allowed for these DoD

"horror stories", must be analysed to determine whether new

techniques are needed to improve the accuracy of cost

estimates. Less someday the Air Force states, depart from

me ye unfaithful steward into everlasting interviews with

20/20 and 60 minutes.

Specific Issue

In major weapon system acquisition within the DoD the

use of learning curve theory in production estimates is

commonplace (16:16),(25:20). Most government cost analysts

are well versed in the use of the learning curve, and

appreciate its importance to the production cost estimate.

In fact, DoD Instructions 7000.3 dated April 1979, requires

that all large acquisition programs use a learning curve in

defining a Design to Unit Production Cost Value (8:6). With

the Advanced Tactical Fighter (ATF) engine estimate, a

one-percent change in the rate of learning would change the

production estimate total by more than 1.5 billion then-year

dollars. This is a change of greater than five-percent of

the total production estimate.
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The rate of learning choosen by the cost analyst is

obviously very important, so one question is "how does the

analyst decide on the appropriate rate of learning"? The

two methods most often used are system analogy and

contractor analogy. No matter which method is used there

has to be a way to determine actual rates of learning

experienced by analogous systems or selected contractors.

This is where regression techniques get involved. Actual

data is either ploted or entered into one of the many

learning curve programs, the most popular being one

developed by Ilderton, called ICLOT, and the most flexible

being one developed by Hutchison. The ICLOT program uses

the weighted least-squares technique, offering the user no

option, while the Hutchison learning curve program offers

the user the choice between ordinary and weighted

least-squares to calculate the actual rate of learning

(16:22), (15:vii).

As shown by Avinger either ordinary or weighted

least-squares techniques provide a good fit to production

lot data, but there is room for improvement in the learning

curve fitting technique (5:64-70). One potential area for

improvement to Avinger's thesis is to use the true lot

midpoint algorithm as discussed by Hutchison, instead of the

heuristic used by Avinger (5:7). Another potential area for

improvement is in the weighting of the lots in order to

eliminate the problem of heteroscedasticity. Currently the

only weighting scheme offered by the literature is to weight

each point by the number of units in the lot. This is the

3



correct weighting scheme if the analyst has individual unit

cost data and the variance of the estimated unit cost is

constant. However, since learning curve data used by the

analyst is almost exclusively reported as lot data the

analyst must deal with lot averages. This raises the

question as to the variance of the lot average costs. This

question must be answered in order to determine the proper

weighting scheme. The other area for improvement Is to

eliminate the bias that is present as discussed by Ilderton

(16:43-45) and Daneman (10) and demonstrated by Avinger (5).

Each of these authors shows that a bias exist, but they do

not agree on the magnitude and/or direction.

The goal of this thesis is to further the work

accomplished by Avinger, who investigated various learning

curve fitting techniques to determine which method most

closely approximated the actual learning curve. This thesis

will compare the ordinary least-squares (OLS) technique with

the weighted least-squares (WLS) technique. The focus is on

the WLS technique which offers the most promise for DoD

production programs which are made up of unequal lot sizes,

and is equivalent OLS when lot sizes are equal. The results

obtained by Avinger on WLS will be compared with the results

obtained through this study to determine if progress is

being made towards a better fitting technique.
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Research Objectives

In order to achieve these goal-, the following

objectives were used to guide the research:

1. Compare and contrast results from use of the true

lot midpoint algorithm versus the lot midpoint heuristic for

both ordinary and weighted least-squares.

2. Validate the procedures used to obtain the

parameter estimates and statistics for both ordinary and

weighted least-squares.

3. Compare the fitting techniques of ordinary and

weighted least-squares for learning curve data. Which

technique predicts closest to the true mean of the

intercept and slope parameter? Which technique is a

more efficient estimator of the intercept and slope

parameter?

4. Determine how well the estimated value for the

intercept and slope approximate the true value. Determine

whether the bias reduction factor proposed by Ilderton or

the one proposed by Daneman is the most appropriate for

learning curve data. Upon determining which bias reduction

factor is most appropriate, determine if the factor's use

will result in unbiased estimates.

5. Test whether the average unit cost data is normally

distributed, in both the transformed and untransformed

state.

6. Test to see whether the weighting scheme used in

the ICLOT program and the Hutchison learning curve program

can be improved upon.
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Definitions

Cost(s) - Refers to the dollar amount or hours of labor that

has been or is projected to be expended on a

system.

Learning Curve Theory - Refers to the regular pattern in

unit cost which occurs as the contractor and

contractor personnel gain experience producing a

particular system. The learning curve is also

referred to as the progress curve, cost

improvement curve, and experience curve. The

terms all mean the same thing in this thesis.

Learning Curve Slope (L) - "A nonalgebraic concept which can

be visualized as the percent (or ratio) of work

required to produce an item after a 100 percent

increase in quantity" (19). For example, if

the cost of unit four is $100, using the unit

curve assumption and a learning curve slope of 80

percent, the cost of unit eight (100 percent

increase from unit four) would be $100 * .80 or

$80, unit 16 would cost $64, and so on. The slope

is given by equation 1.1 and 1.2.

L = Y /Yx = A(2X**b)/A(x**b) (1.1)

This can be further reduced to read

L = 2**b (1.2)

Which can be rewritten in terms of b, by taking

the logarithm of both sides, which is the

6



expression used in both the cumulative average and

unit formulation.

b = log(L)/log(2) (1.3)

Rate of Learning - Is expressed as 1 - L, when L is in

decimal form.

7



II. Literature Review

This literature review provides the foundation for the

research of the learning curve theory as it is used within

the DoD. More specifically this review will provide the

tools necessary to critique and improve the most widely used

learning curve formulation. This will be accomplished

through review of learning curve programs and their

associated fitting techniques used in the cost estimating

field, both automated and heuristic. Data assumptions in

order to obtain valid statistics will be -eviewed, along

with tests and checks of the assumptions where practical.

This review will also contain a brief historical perspective

of learning curve theory, and a discussion of the two most

widely used learning curve formulations, namely the unit and

cumulative average formulations.

History

The initial publication on learning curves was an

article entitled "Factors Affecting the Cost of Airplanes",

authored by T.P. Wright in 1936. According to the article

Wright began his investigation in 1922 when he started

studing the variation in cost with quantity in the aircraft

industry. His findings indicated that as cumulative

quantity increased the labor hours per aircraft decreased in

a regular pattern (30:122). This pattern when plotted on

arithmetic paper is an exponentially decreasing curve, but

is a straight line when plotted on log-log paper. Wright's

8



findings thus gave birth to the cumulative average

formulation of the learning curve theory. The cumulative

average formulation worked well during the 1930s and 1940s

for the aircraft industry. Procurement changed after World

War II. These changes included smaller quantity buys,

multiple configuration changes and breaks in production.

Due to these changes, the cumulative average formulation

lost favor as its projections became questionable

(1:1.13.4). This loss of favor stems from the fact that the

cumulative average curve dampens the perturbatiois which

occur in a program. This loss of information greatly

hinders the analysts ability to estimate the resources

required for future builds/buys.

In the mid 1950s the unit formulation of the learning

curve was developed. In reviewing the literature it is not

clear as to who should receive credit for the unit curve

formulation. In Cost Improvement Analysis, a QMT180 text,

credit is given to Crawford; however, in an article written

by Adams credit is given to the Boeing company

(2:1-2),(1:1.13.4). Who gets credit is not critical in this

thesis. What matters is that "the learning curve is the

most widely used tool for both estimating the cost of new

DoD programs and controlling the cost of DoD programs" as

stated by Lieber (20:2). And between the cumulative average

and unit curve formulation the unit formulation is more

widely used. As reported by Ilderton, the Defense Contract

Audit Agency (DCAA) performed an agency wide survey on

learning curve experiences. Of the 219 curves, which were

9



based on direct labor hours or cost, 93 percent of them used

the unit curve formulation (16:14-16). Also the unit

formulation offers more advantages to the analyst than the

cumulative average formulation. Cochran reports, "the

'cumulative average formulation' is a much dampened form of

the basic data, which itself may conceal important trends"

(9:56). Adams supports this claim stating that "the problem

with projecting from the cumulative average curve is that it

does not properly reflect the drastic changes from one lot

to another" (1:1.13.4). Cochran adds, "the 'cumulative

average formulation' has a sharper slope in it than does the

basic unit curve". This fact leads Cochran to conclude that

use of the cumulative average formulation as a forcasting

tool could prove disastrous to the forcaster (9:56). An

even stronger comment comes from Adams who states, "it

should be understood that the unit curve is mathematically

correct, whereas the 'cumulative average curve' is

incorrect" (1:1.13.4).

There have been several attempts to develop other

formulations to the learning curve, none of which has been

institutionalized within the DoD, but some deserve further

investigation. These other for-aulations include the DeJong

model, the S-model, the plateau model, and the Stanford-B

model (31:304). This thesis is primarily concerned with the

unit curve formulation, touching only briefly on the

cumulative average formulation.

10



Formulations

Presented here are the formulations for the unit curve

and the cumulative average curve. However, due to the much

wider acceptance of the unit curve theory only the unit

curve formula will be investigated.

Cumulative Average Formulation. The cumulative average

formulation, also known as the Northrup curve, is most

appropriately applied to programs where initial costs are

high and then settle down to a steady rate of decline. This

means that if the slope and the total program cost were

expected to be equal, the cumulative average formulation

would have a higher initial value than the unit formulation

as depicted in Table 1. How long the units remain higher is

dependent upon the slope of the learning curve. Table 1

shows the different rates of decline for the two

formulations given the same learning curve slope, and the

same total cost.

Table 1. Comparison of the Unit
and Cumulative Average Curves

Unit # Unit Cost-80% unit form Unit Cost-80% cum avg
1 $100.00 $130.52
2 80.00 78.31
3 70.21 66.08
4 64.00 59.22
5 :9.56 54.58
6 56.17 51.15
7 53.45 48.47
8 51.20 46.28

Total $534.59 $534.61
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The basis of the cumulative average formulation is that

"as the total quantity of units doubles, the (cumulative)

average cost per unit decreases by some constant percentage"

(2:3-3). This constant percentage decrease is refered to as

the rate of learning. The formula for the cumulative

average theory is:

Y = A * X**b (2.1)

where:

Y = cumulative average cost of X units
A = theoretical cost of the first unit
X = cumulative unit number
b = an expression related to the rate of learning

Unit Formulation. The unit curve formulation, also

known as the Boeing curve, is most appropriatly applied

to programs which begin production in a relatively stable

environment. This would be indicated by "hard" tooling In

place, and most of the "bugs" worked out of the development

system (2:2-1). Table 1 depicts how the learning progresses

for the unit formulation. Note how steady the decline is

when compared with the cumulative average formulation. The

basis of the unit theory is that "as the total quantity of

units doubles, the cost per unit decreases by some constant

percentage" (2:2-1). The unit curve formula is as follows:

Y = A * X**b (2.2)

where the variables are now:

Y = cost of unit X
A = theoretical cost of the first unit
X = unit number
b = an expression related to the rate of learning

12



Most cost data procured by the DoD reports costs accumulated

by lots and not individual units. If unit costs were

reported, fitting a curve to the data would be relatively

problem free. This thesis deals with the problems of

fitting a curve to lot data where lot averages must be used.

The formula for the unit theory which deals with lot data

is:

Y = A * X**b (2.3)

where the variables are now:

Y = average cost per unit in the lot
X = lot midpoint
A,b = as defined above

Characteristics of the Two Formulations. When

comparing the two formulations the following

characteristics, as depicted by the text Cost Improvement

Analysis, should be noted:

(1) when both are plotted on the same scale and the
same basic data is used, the unit curve is lower on the
scale than the cumulative average curve as long as
there is learning;
(2) when one is linear, the other is 'curvilinear'
(the linear curve is the one accepted as being most
appropriate);
(3) one is most drastically 'curvilinear' only during
the early units of production such as the first 20 or
30 units (refer to Table 1); and
(4) the 'curvilinear' line tends to become a straight
line and tends to parallel the other beyond
approximately the 30th unit, although, theoretically,
it is never quite a straight line [2:3-71.

13



The Unit Curve Formula in Depth

This section will focus strictly 3n the unit curve

formulation. Most of what is said from here on has no

application to the cumulative average formulation.

Parameter Estimation. The unit curve formula has two

parameters. One parameter is first unit cost represented by

the letter A. The other parameter, b, is an expression

related to the rate of learning. There are two common

approaches used to compute these parameters. One approach

is to estimate the parameters by hand. A heuristic is used

to determine lot midpoint and straight forward math is used

to determine average unit cost from production lot data.

The lot midpoint is used as the x-value and the aveLage unit

cost is used as the y-value. These points are plotted on

log-log paper. The analyst then uses a straight edge and

visually best fits the data. This procedure allows the

slope and first unit cost to be approximated. As Kankey

explained, such graphs are advisable for data analysis, but

estimation of the first unit cost and slope are not highly

precise (19). If the reader desires further information on

the topic of learning curves see the Cost Improvement

Analysis text (2); Volumn 1, "AFSC Cost vstimating Handbook"

(3:Chap 7); or Brewer's thesis (7).

The second approach is to use one of the several

software programs to estimate the slope and first unit cost

parameters. The two software programs reviewed are ICLOT

and the Hutchison learning curve program.

14



ICLOT. The ICLOT learning curve program was

developed by Ilderton in 1967 to calculate a learning curve

slope and first unit cost based upon production lot data

(16:iv).

The ICLOT program uses the weighted least-squares best

fit (WLSBF) technique to fit the data. This is due to the

problem cf heteroscdasticity (a topic to be discussed

later), which occurs when the variance of the error term is

not constant. This changing variance is almost a certainty

with unequal lot sizes. Ilderton states that:

It seems reasonable to believe that the variance of the
logarithm of the average labor hours required for a
large lot should be less than the variance of the
logarithm of the average unit labor hours required for
a small lot (16:22].

Ilderton goes on to say that in order to avoid the problem

of heteroscedasticity "each lot must be given a weight

proportionate to the number of units in that lot" (16:22).

In the ICLOT program the user enters the production lot

data into the computer, the ICLOT program then provide the

following output based on the WLSBF technique:

Computed Value of First Unit--A
Regression Slope Coefficient--b
Improvement Curve Percentage =
Coefficient of Correlation--R
Coefficient of Determination--R**2 = (16:32)

Hutchison Learning Curve Program. The

Hutchison learning curve program was developed in 1985 by

Larry Hutchison as a Masters Degree student at the Air Force

15



Institute of Technology (AFIT). Hutchison's objective was

to develop a computer program which would provide fexibility

to the user in selecting the particular learning curve

application most appropriate to his needs. Hutchison

succeeded in writing a program which allows the user to

select either ordinary or weighted least-squares (along with

other options). Within these options the user can select

the unit formulation or the cumulative average formulation

(15:iv).

In the Hutchison program the user enters production lot

data into the computer. The program then outputs the same

statistics as the ICLOT program. For a more extensive look

into the options available within the Hutchison learning

curve program the reader should refer to his thesis (15).

Fitting Techniques

There are many methods which can be used to fit a curve

to a given data set. Among this list are ordinary and

weighted least-squares, which are parametric techniques, and

median and mean slope, which are nonparametric techniques.

This review is primarily concerned with the above mentioned

parametric techniques since they are the ones used in the

available learning curve software programs. The major

difference between parametric and nonparametric techniques

is that the statistics obtained in using nonparametric

techniques make no assumptions about the distribution of the

data in order to be valid. However, the statistics obtained

in using the parametric techniques mentioned above require

16



the data to be normally distributed in order to be valid.

If it becomes apparent in this research that the

distribution of production lot data is not normal then

further research into nonparametric techniques may be

warrented. No applied software could be found which used a

nonparametric fitting technique to provide parameter

estimation to the learning curves, so it would serve no

purpose to critique the technique.

Normal Equations. The learning curve equation is

ln(Y) = ln(A) + b*ln(X) + ln(E) where the parameters are

A, the first unit cost, and b, an expression related to the

learning curve slope. For an equation such as the learning

curve formula the parameters can be estimated using the

normal equations for the LSBF regression technique.

Following are the two normal equations:

b = [SUM(Xi*Yi)-(n*X*Y)1/[SUM(Xj)-(n*X)]

A = Y - b*X

If the WLSBF regression technique is used the normal

equations take on a weighting component. In the case of the

two software programs reviewed this weight component is

equal to the lot size. Following are the two normal

equations with weights applied:

b = {S'JM(w i * X i * Y i )-(SUM(wi *Xi )*SUM(wi*Yi ) J/(SUM(wi )) I
/{SUM(w i *Xi ) -[SUM(w*X i ) ]/SUM(w i )}

A = [SUM(w i *Y i )-b*SUM(wi*Xi )]/SUM(wi)

If all the lot sizes were equal it is clear that the
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weighted normal equations would be reduced to the unweighted

normal equations since the weighting component would be

reduced to a constant and would divide out (26:38,167).

Since most DoD production programs, if not all, consist

of unequal lot sizes, the question becomes--which technique,

WLSBF or ordinary LSBF (OLSBF), is most appropriate, and if

WLSBF is more appropiate what weights should be used?

Guest points to three postulates which show that WLSBF

is more appropriate when the standard deviations or variance

of the lot averages are not equal. First it is easy to show

in theory that the variance for the lot averages is on,

given that a 2 is the variance for unit i, and the data is

homoscedastic (constant variance), where n is the number of

units in the lot. Therefore, If the data is homoscedastic

(a2 = a2 for all i) then for different lot sizes the

variance and the standard deviation of the lot averages, are

not equal, which implies that the data is heteroscedastic.

Guest states that "the least-squares postulate leads to the

weighted mean as the best estimate" (14:18). Guest goes on

to show that the minimum variance postulate, which states

that "the best estimate is that which leads to the least

variance Y" (where is the predicted value of Y), is

satisfied when weights are applied to bring the variance of

the lot averages to equal values (14:19). In concluding,

Guest shows that the maximum likelihood postulate supports

the statement that the weighted mean leads to the best

estimate (14:19,20). Guest also shows that the WLSBF

technique leads to a more efficient estimate (14:20).
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Efficiency in this case speaks to the variance about the

parameter estimates. The more efficient the estimate the

smaller the variance about the parameter estimates.

In this same vein Avinger conducted a study comparing

four fitting techniques, two of which were OLSBF and WLSBF.

Avinger's results indicated that for unequal lot sizes the

unweighted mean predicted closer to the true value, and the

weighted mean was a more efficient predictor (5:43). This

apparent contradiction with the postulates presented by

Guest will be further studied in the research portion of

this thesis.

The Linear Model. The unit curve formula which handles

lot data, is a multiplicative formula as indicated by

equation 2.3. This formula is rewritten, and depicted as

follows in equation 2.4, to include a multiplicative error

term for use in regression.

Y = A * X**b * E (2.4)

The multiplicative error term produces a constant percentage

error as opposed to a constant error in magnitude or an

additive error. Figure 1 and 2 demonstrate the difference

between a multiplicative error term and an additive error

term. Note how the band about Y decreases as more units are

produced in the case of the multiplicative error term

(remember that the cost per unit decreases as the

number of units produced increases), whereas, the band
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remains parallel to Y as more units are produced with the

additive error term.

C ' C
0 0
S S
TT

Cumulative Units Cumulative Units

Figure 1. Illustration of a Figure 2. Illustration of
Multiplicative Error Term an Additive Error Term

The multiplicative error term is appealing since the ability

to predict the cost of a unit would seem to become more

precise as the cost per unit decreased along with government

and contractor experience in producing and estimating the

system. The multiplicative error term is also more

appealing than the additive error term since transforming

equation 2.3 with an additive error term to a linear

equation would be impossible.

There are some important assumptions about the E's

which will follow. In order to use the linear regression,

equation 2.4 must be transformed from it's curvilinear state

to a linear state. This is done using a logarithmic

transformation. By taking the natural logarithm (1n) of

both sides of equation 2.4 the following linear equation is

obtained:

ln(Y) = ln(A) + b*ln(X) + ln(E) (2.5)

Except for the ln(E) term it is clear that equation 2.5 is
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in the form of the standard linear equation Y = a + mX

where ln(A) is the Y-intercept (a) and b is the slope (m).

This equation can now be plotted after the A and b terms are

calculated, either by hand using the normal equations or by

computer using a statistical software package. Of course

with large data sets it becomes impractical to calculate

these parameters by hand.

In order to obtain valid statistics from the LSBF

technique certain assumptions about the E, or in this case

the ln(E), must be met. These assumptions are normality,

mean of zero, and constant variance. If these postulates

are met the LSBF technique will provide the best linear

unbiased estimate (18:32,171-174). These assumptions of

normality and constant variance carry over to the in(Y), but

the mean is ln(A) + b*ln(X) not zero. If the data

violates any one of these, the statistics obtained from the

analysis will be flawed. How badly flawed depends upon

which assumption is violated and to what extreme the

assumption is violated. Most of the time it is

assumed that the data satisfies these postulates. The

regression procedure is performed and then tests may be run

on the data to test for normality, constant variance, and in

the case of the error terms a pattern or trend may indicate

a misspecified model or. improper identification of

significant variables to be included in the model (23).
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Assumptions About the Data

The assumptions about the ln(E)'s are that they are

normally distributed, with a mean of zero, and a constant

variance. The mean of zero assumption will not be covered

in depth. Note that the least-squares technique fits the

line through the data in such a way as to make the mean of

the error term zero. So the assumption that the ln(E)'s

have a mean of zero is automatically met when the data is

fit using the least-squares technique. However, if a trend

in the error terms is noted there may be a problem with the

chosen model or a significant variable may have been

excluded (23).

Normality. To address normality of the ln(E)'s one

must also address the log-normal distribution since if the

ln(E)'s are normally distributed it follows that the E's

must be log-normally distributed. And if the E's are

log-normally distributed it would seem reasonable that this

distribution would be passed on to the Y's. People who have

written on the subject, such as Avinger, have simply

explained that in order for the ln(E)'s to be normally

distributed the Es must be log-normally distributed (5:9).

Ilderton simply states that the unit curve theory "assumes

that the number of direct labor hours required to make each

unit is log-normally distributed" (16:33). One might be

tempted to conclude that analysts are ignoring reality to

Justify using the statistically powerful least-squares
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technique. However, some further reading on the log-normal

distribution supports the logic of the assumption.

Aitchison and Brown, in one of the few books devoted

entirely to the log-normal distribution, postulate that the

log-normal distribution is present in the fields of

anthropology, astronomy, economics, as well as in industry.

(4:100-105). The log-normal distribution is positively

skewed, extending from zero to infinity (4:7-9). As

Ilderton points out this is the same feasible range that

program man-hours can assume. Ilderton felt that the

man-hours or costs would be positively skewed since they

could not take on negative values but were unbounded on the

positive side (16:33). Ilderton also believed that the

man-hours required to produce a unit follow the

characteristic of a lognormal distribution, since as he puts

it, "the variance of the man-hours required to produce a

unit decreases as the number of units increases and as the

expected value of the man-hours decreases" (16:33). This

seems logical since the cost (or hours) required per unit is

decreasing, the same magnitude error will result in a lower

absolute error. This results in decreasing bounds about the

estimate. Also as units are manufactured the experience

gained should allow for more accurate estimates of unit

cost. This also would result in a decreased variance.

This seemed to Justify the initial normality assumption

of the ln(E)'s until discussions on the topic with Murphy.

Murphy pointed out that the assumption for the ln(E)'s was

fine; however, due to the central limit theorem the lot
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average values, ln(Y), did not necessarily exhibit the

normal distribution of the ln(E)'s (23). The central limit

theorem states:

If random samples of n observations are drawn from a
population with finite mean, u, and standard deviation,
a, then when n is large, the sample mean, Y, will
be approximately normally distributed with mean equal
to u and standard deviation a/n. The approximation
will become more accurate as n becomes large (21:1981.

What this means is that if the E's are log-normally

distributed and n is small then the Y's are log-normally

distributed. However if the E's are log-normally

distributed and n is large then the central limit theorem

indicates that the Y's are approximately normally

distributed. This could have a serious impact upon the

assumptions which are made about the ln(E)'s and Y's in

equation 2.5. For example, if the i's in equation 2.4 are

normally distributed for large n then taking the natural

logarithm of the Y's makes the ln(Y)'s non-normally

distributed which is a violation of the assumptions for

valid statistics using LSBF.

A good question at this point is how large does n have

to be for the i's to approximate the normal distribution

thus creating a violation of the normality assumption of

the ln(Y)'s? Mendenhall states that:

Unfortunately there is no clear cut answer to this
question, as the appropriate value for n will depend
upon the populatiuon probability distribution as well
as the use we will make of the approximation (21:199].
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Discussions wiLh Murphy indicate that most distributions of

sample means will approximate the normal distribution when n

is greater than 30; however, some distributions, such as the

Cauchy distribution, do not approximate the normal

distribution until n is greater than 100, while the binomial

distribution approximates the normal distribution when n is

no greater than 10 (23). Nonetheless the normality

postulate definitely presents a problem in this research.

Although this thesis attempts to make the cuirrent

fitting techniques more valid and less biased when fitting

learning curve data, it is apparent that further

investigation into nonparametric fitting techniques needs to

be made. Nonparametric techniques make no assumptions about

the distribution, thus the statistics obtained will be valid

as long as the nonparametric techniques can handle data

which is normal and non-normal in the same data set.

Tests For Normality. There are several methods to

test for normality of the ln(E)'s and the ln(Y)'s. In

practice, the ln(E)'s would not be observed, so the test for

normality is done on the residuals. The residual, e, is

equal to ln(Y) observed minus ln(Y) expected. Weisberg

warns that if the observations or degrees of freedom for

error is small the residuals may appear to be normally

distributed even when they are not (29:157).

A technique for studying non-normality, espoused by

Weisburg, is the normal probability plot which is often

refered to as the rankit plot (29:157). Murphy explained
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that the rankit plot graphs the observed distribution of

either the e's or Y's versus the hypothetical or expected

distribution of the e's or Y's given normality (24).

Therefore, If normality were the case the plot would

approximate a straight line similar to Figure 3. If

normality is not the case the plot would not approximate a

straight line but would appear more like Figure 4.

0 0

b e's b e's
5 5

e or e or
r r
v Y's v Y's
e e
d d

expected e's or Y's expected e's or Y's

Figure 3. Rankit Plot of Figure 4. Rankit Plot of
a Normal Distribution a Nonnormal Distribution

Although intuitive it requires practice to learn how to

interprete the rankit plots (29:159).

Quantitative methods to test for normality include the

Chi-squared test, the Shapiro-Wilks test, and the

Kolmogorov-Smirnov (K-S) test. The Chi-squared test

measures the observed frequency vesus the expected frequency

based on the fact that they follow a normal distribution.

This test requires a large number of observations. The

Shapiro-Wilks test generates the statistic W which ranges

from 0 to 1. Values of W close to one support the normality

assumption while numbers close to zero lead toward rejection

of the normality assumption. This test can be done with a

small number of observations (24). The K-S test generates
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the statistic D, which also ranges from 0 to 1. In the case

of the K-S test numbers close to one lead toward rejection

of the normality assumption while numbers close to zero

support the normality assumption. The K-S test is the most

powerful of the three test, but cannot be used when the

number of observation is below fifty. The equation for D

is:

D = maximum i IFi - Sil

where:

Fi= Cumulative relative frequencies of ith observation
Si= Cumulative observed frequencies of ith observation

(22:458-460)

For further discussion on each of these tests and the

procedures to employ them, refer to Statistics For

Management And Economics, chapters 12 and 13 (22).

Constant Variance. The next requirement to use the

statistical measures from the LSBF technique is constant

variance of the error term over all observations. For the

most part it is assumed that the variance is constant and

then this assumption is tested after the modeling process

has taken place. There are certain situations which

definitely indicate a non-constant variance, know as

heteroscedasticity. One situation is unequal lot sizes. If

each observation has a variance of a2 then the variance for

a lot of size n is a/n . If n is not equal for each lot,

heteroscedasticity exist. Under normal conditions this is

easily remedied by simply weighting the data by the lot size
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n. This brings the variance for each lot, o2/n, back to 2

(26:170).

Individuals such as Murphy(23) and Kankey(19) have

stated that weighting by the lot size may be inappropriate

for learning curve data. This is due to the logarithmic

transformation of the costs while the lot sizes remain

untransformed, possibly giving too much weight to large lots

and not enough weight to small lots. Ilderton believed that

weighting by the lot size is appropriate. He states that:

The conclusion that the weighting is appropriate
follows from the fact that the variance of 'log(Y)' is
approximately (exp**a 2 - 1)/n for large n .
Furthermore ...... the value of (exp**Ga - 1) is
unlikely to be very different from a2. Consequently,
combined large lots, small lots and unit data in the
same analysis will not seriously affect the propriety
of the weighting provided by the ICLOT progam [16:431.

Murphy points out, however, that the variance of the log(Y)

is not the same thing as the variance of the log(Y) which

must be considered when evaluating the unit formulation

(23).

Bias

One problem found in the method for fitting a learning

curve to production lot data is bias. In some cases bias is

introduced in an equation in order to make the estimator

more efficient. In this case however bias is introduced

through the transformation process of taking the logarithm

of the data and then transforming the dada back to it

original state. According to Daneman, the logarithm average

underestimates the average of the original data and
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estimates the median not the mean (10:3). Daneman believed

that on the average, taking the log-linear transforms of X

and Y, performing LSBF, then untransforming will produce

estimates that underestimate the sample Y values (11:57).

This bias will not create a large percentage error,

approximately 1% to 2% according to Daneman; however, with a

large production program this bias can lead to unnecessarily

large dollar errors (10:5),(11:57). According to Danaman

the slope parameter is accurately estimated using the LSBF

regression technique while the first unit cost parameter (A)

is the reason for the biased estimate (10:6). Of note is

that Daneman dealt with OLSBF, non-learning curve data.

Avinger's work with learning curves shows that both the

slope coefficient (b) and the first unit cost may be the

cause for the biased estimate (5:31-52). This research will

investigate whether bias exists in the estimate of the

slope. If bias does exist in the slope the literature

reviewed offered no information of an adjustment factor

while both Danaman and Ilderton offer bias adjustment

factors for the first unit cost parameter. In order to get

an unbiased or less biased estimate the first unit cost and

possibly the slope parameter will have to be adjusted.

Daneman suggests that:

When we perform a log linear transform to perform least
squares best fit, we then untransform to get a Y-value.
To get an unbiased Y value estimate we will further
multiply this estimate by 'exp**(a 2/2) ' [10:71.
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Ilderton states that the estimate obtained from the

ICLOT program should be multiplied by:

exp{ o 2*[(-l)+(i/n)+(l/N)+[logm 0-SUM((logm )/N)]**2

/n*{SUM[(logmi)**2]-(SUM logmi))**2/N}]}

where

N = number of units previously produced
n = number of units in sequence
m o = midpoint of the sequence
m i = an approximation for the lot midpoint

This equation can be segmented in four parts,

exp{ I2/2*(-1)}
exp{ a 22*(1/n))
exp{ G2/2*(/N)}
exp{ o2*[logm -SUM((logmo)/N)]**2/[n*{SUM[(logmi)**2

-((SUM(logmi))**2/Nl]

The main influence in the equation is the first term which

Ilderton shows to be a number which approximates 0.99 when

a2 = 0.1 and 0.98 when a2 = 0.2. The remaining terms In

the equation all approximate one, each being slightly larger

than one. So the last three terms all slightly reduce the

bias of the estimate. As a rule of thumb, multipling

the estimated value for Y by a number slightly larger than

exp(-a 2/2) should closely approximate the unbiased estimate

(16:43-46).

Avinger's results indicate that a number smaller than

exp(- /2) should be used to reduce the bias in the

estimate of the first unit cost or intercept term (5:36-51).

These three different conclusions will have to be

investigated in this research. Avinger tends to line up

with Ilderton except for the magnitude of the bias reduction
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factor. This may be resolved when true lot midpoint is used

to fit the data. The contradiction between Daneman and

Ilderton seems more substantial, in that Daneman believed

that the bias resulted in a slight underestimate of the true

first unit cost while Ilderton believed that the bias

resulted in a slight overestimate of the true first unit

cost. This difference may be due to Daneman's focus on

typical log-linear regression problems with equal weights

per observation, versus Ilderton's focus on log-linear

regression problems for learning curve data in lot form with

lot weights. If the analyst were to select the wrong

adjustment factor the result may be more than Just a slight

error.
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III. Methodology

Chapter Overview

This chapter descvibes the methodology used to

investigate the Research Objectives stated in Chapter I. It

describes the development of programs to generate production

lot data and how this data was used to answer the research

objectives.

General Method

Learning curve data was simulated and analyzed. The

data were generated using known slope and intercept

parameters, and three different error terms. The ordinary

and weighted least-squares fitting techniques were used to

estimate the slope and intercept parameters. Then analysis

of the statistics, amount of bias present, and violations of

the normality and constant variance assumptions were

performed. In several of these cases comparisons were made

to past research in the area of learning curve theory.

Data Simulation

The SAS System was used to simulate learning curve data

for lots from a production run. First, cost data based on

the unit formulation were generated for individual units

within the production run. Second, the data were grouped

into unequal lots. The data simulation for each of the

Research Objectives were similar; however differences were

present to best meet the particular objective. These
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differences and several of the SAS functions used to

generate the data will be discussed in the following

paragraphs.

General Simulation Procedures. The simulation of the

unit cost data was accomplished using the formula

ln(Y) = ln(A) + b*ln(X) with a SAS generated random error

term. A program was writen to generate 100 production runs

per data set, each production run consisting of 210 or 585

units, depending on the particular Research Objective. The

exact equation used to generate the data was:

ln(Y) = ln(A) + b*ln(X) + E (3.1)

where

A = 25,000 (true first unit cost)
b = ln(0.80)/ln(2) = -0.321928095 (equivalent to an

80 percent learning curve slope)
X = the sequential unit number 1-210 or 1-585
Y = cost of unit X
E = a normal random error term multiplied by the

selected standard deviation

The error term E was generated using the equation:

E = RANNOR(seed) * standard deviation (3.2)

where the standard deviation was a constant which represents

the mean estimating error; seed is an arbitrary number which

initializes the random number generation; and, RANNOR is a

SAS function which "generates an observation of a normal

random variable with mean 0 and variance 1 (27:267). Notice

from equation 3.1, that the data is generated in the
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log-linear state. This is subsequently transformed back to

the standard state.

Specific Simulation Procedures. The following table

depicts the peculiarities used in simulating the unit cost

data by Research Objective.

Table 2. Simulation Characteristics

Research # of Units Per
Objective Error Term Production Run
1 and 2 RANNOR(1446) * 0.12 210
3 and 4 RANNOR(1446) * 0.04 210

RANNOR(1592) * 0.04 210
RANNOR(1958) * 0.04 210
RANNOR(1982) * 0.04 210
RANNOR(2001) * 0.04 210
RANNOR(1446) * 0.12 210
RANNOR(1592) * 0.12 210
RANNOR(1958) * 0.12 210
RANNOR(1982) * 0.12 210
RANNOR(2001) * 0.12 210
RANNOR(1446) * 0.20 210
RANNOR(1592) * 0.20 210
RANNOR(1958) * 0.20 210
RANNOR(1982) * 0.20 210
RANNOR(2001) * 0.20 210

5 and 6 RANNOR(1111) * 0.12 585

The reason for using different seed numbers was to generate

several unique data sets which all had the same statistical

properties. Different standard deviations were used in

order to determine what impact different levels of

estimating error would have on the statistics obtained from

the LSBF techniques. The production runs of 210 units each

were selected in order to replicate Avinger's data, and the

production runs of 585 units each were generated to allow
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for substantially different lot sizes to test the normality

and constant variance assumptions.

Lot Data. The data from each of the 100

production runs were grouped into lots. A SAS program was

written which performed the grouping. The lot sizes were

generated using the follow equation:

lot size = Ci+ (Si* RANUNI(seed)) (3.3)

where
Ci= constant for lot i
Si= scaling factor for lot i

The RANUNI function "returns a number generated from the

uniform distribution on the interval (0,1)" (27:269). For

Research Objective one the identical program writen by

Avinger for generating random, scaled, lot sizes was used

(5:24). For research objective two, three, and four the

equation remained the same, however, C and S were changed to

show a different production rate scheduling profile.

Production buys for these objectives begin with a small lot

buy, increase to a steady production rate where lot size

levels off, and then dip sharply at the end when the final

units to complete production are purchased.

Peculiar lot generation techniques used for each

Research Objective are covered in Chapter IV.

Lot Plot Point Generation. For research objective

one both the heuristic lot plot point and the true lot

midpoint were calculated. The heuristic lot plot point is

simply the number of units in the lot divided by two added
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to the previous number of units produced. For example, if

10 units had been previously produced, and a lot plot point

is to be calculated for the next lot which consists of 30

units, the lot plot point Is 25 (10 + (30/2)). The one

exception is with the first lot. If the first lot is equal

to or greater than 10 units the lot plot point is calculated

by the number of units in the lot divided by three. The

true lot midpoint requires more calculations, and more

extensive programing. Since the true slope is known (80

percent) the task is greatly simplified. The equation for

true lot midpoint is:

X-mid = {[Li**(b+l) - (Fi - 1)**(b+l)]
/[ni* (b+l)]}**(i/b) (3.4)

where

X-mid = true lot midpoint
L i  = last unit in lot I
b = expression related to the rate of learning
Fi  = first unit in lot i
ni  = number of units in lot i (15:33-41)

For detail on how to find the true lot midpoint when the

slope Is not known the reader is refered to Chapter III of

Hutchison's thesis (15).

The following procedures were used to include the

calculation of the true lot midpoint into the SAS program

used to generate lot data.

1) Initialize the vector element in the SAS program to

zero.

2) Calculate the lot size (Z).

3) Initiate a loop for I equaling one to Z.
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4) Within the loop calculate a variable (DUM) which

equals the previous value of that variable (DUM)

added to the sequential unit number raised to the

power of b.

5) End the loop.

6) Calculate equation 3.4.

For lot four (I=4) these procedures appear as follows within

the SAS program.

B = LOG(.8)/LOG(2);
LOT[4,4] = 0;
Z = LOT[4,1] - LOT[3,1]; {yields the lot sizel
Do I = 1 td Z;

DUM LOT[4,4] + ((I + LOT(3,11)**B);
LOT[4,4] = DUM;

END;
LOT[4,4] = (LOT[4,4]/Z)**(l/B);

The position in the matrix designated Lot[4,41 will then be

the value of the true lot midpoint for lot four for each of

the 100 production runs per data set.

Fitting Techniques

This section will cover the programs used to calculate

the learning curve parameters using both the ordinary and

weighted least-squares techniques.

Ordinary Least-Squares. The OLSBF technique was run on

the SAS system. The data in its untransformed state is

curvilinear which makes it unsuited for linear regression

techniques such as least-squares. The data to be fitted,

lot average cost (Y) and lot midpoint (LMP), were
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transformed as follows:

y = ln(Y)

x = ln(LMP)

In SAS the natural logarithm function is LOG as opposed to

In as used in this thesis (27:232). These points were then

fit using the following SAS statements:

PROC REG;
MODEL y = x;

The PROC REG statement along with the MODEL statement will

fit a line through the x,y plot point which minimizes the

sum of squared errors, placing equal weight on each x,y plot

point. The PROC REG and MODEL statement are defined and

described in SAS User's Guide: Statistics (28:658-661).

Weighted Least-Squares. The same technique as

described above is used for the WLSBF technique except for

the addition of a weighting component. The selected

weighting scheme for this research was lot size (Z). The

same transformation as described above is made, however, the

weights remain untranformed. These points were then fit

using the following SAS statements:

W = Z;
PROC REG;
MODEL y = x;
WEIGHT BY W;

The PROC REG and MODEL statments fit a line through the x,y

plot points which minimizes the sum of squared errors,
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however, the x,y plot points are given different levels of

attention depending on the lot size (weight) for that

particular x,y plot point. In essence the weight creates

the number of x,y plot points equal to the size of the

weight. So an x,y plot point with a lot size of five will

be given one-forth the attention of an x,y plot point with a

lot size of twenty. For a further description on the WEIGHT

statement refer to SAS User's Guide: Statistics (28:662).

Conclusion

The described data simulation, lot data generation,

true lot midpoint calculation, and fitting techniques were

the steps necessary to begin the analysis which is contained

in Chapter V. Chapter IV which follows, is a detailed step

by step description of the analysis procedures, and is

intended for the reader who is interested in precisely how

the data presented in Chapter V was generated, and/or the

reader who desires to replicate the research.
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IV. Analysis Procedures

Chapter Overview

This chapter describes the steps used in the analysis

of the unit formulation of the learning curve. The intent

of this chapter is to provide detailed information of the

procedures used in this research to allow thorough analysis

and/or replication of the research. Thus, a step by step

description of the procedures used for each research

objective are recorded. Not recorded are the steps taken to

simulate the learning curve data, to group the data into

lots, and to fit the data using both ordinary and weighted

least-squares. These steps are recorded in Chapter III.

Each objective is restated below, followed by the means

of researching it, the SAS procedures used, and the

statistical methods of analysis used.

Research Objective 1

Compare and contrast results from use of the true lot
midpoint versus the lot midpoint heuristic for both
ordinary and weighted least-squares.

STEP 1 - The first order of business was to replicate

the learning curve data which was simulated by Avinger. The

learning curve data was simulated using equation 3.1.

Program I of Appendix A, shows the SAS program used in the

simulation process. The program generated a data file which

included a column for unit number, unit cost, and cumulative

cost. These columns each contained 100 production runs of

210 units each, or 21,000 data points per column.
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STEP 2 - A SAS file was written which would create a

7x5 matrix based on the data from step one. The columns

included cumulative units, cumulative cost, lot cost,

heuristic lot plot point, and average unit cost for the lot.

Information for each lot was on a separate row. To handle

the 100 production runs 100 such matrices were generated.

Program II of Appendix A, shows the SAS program used to

accomplish this step. The resulting data file was made up

of five columns which included cumulative lot size,

cumulative cost, lot cost, heuristic lot plot point, and

average unit cost for the lot.

Generation of unequal lot sizes was accomplished using

a form of equation 3.3. The seed number used was 1515, and

the scaling factor and constant (actually a set range) were

as shown in Table 3, portions of which were extracted from

Avinger's thesis (5:24).

Table 3. Avinger's Lot Size Characteristics

Lot Smallest Largest Scaling
Number Lot Size Lot Size Factor

1 2 10 10
2 15 25 100
3 20 30 100
4 25 35 100
5 30 40 100
6 40 50 100
7 20 78 N/A

The program was written so that lot sizes would be generated

until they fell within the prespecified ranges. Lot seven

was simply 210 minus the cumulative total through lot six.
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STEP 3 - The data file generated in step two, in

particular the average unit cost and the heuristic lot plot

point variables, were used in the SAS program shown in

Program I and II of Appendix B. The first program was used

for the execution of the LSBF technique. The second program

was used for the execution of the WLSBF technique. A

peculiarity was noted in Avinger's weighting scheme. In his

thesis Avinger clearly indicates that he Intended to weight

by lot size (5:25); however, the SAS program which he wrote

and the results he obtained indicate that he weighted by

cumulative lot size. This cole will be altered for the

remaining research objectives; however, this research

objective was to make a comparison of Avinger's data when

true lot midpoint was substituted for the lot plot point

heuristic. This step generated a list file which was made

up of 100 ANOVA tables.. Each ANOVA table has a predicted

first unit cost (the term first unit cost is used

interchangeably with intercept) and slope coefficient

parameter for each production run.

STEP 4 - The predicted intercept and slope coefficient

parameters were compiled and averaged using the PROC MEANS

procedure (27:960). The Intercept and slope parameters are

returned to their standard state using the antilogarithm

function. Mean values are then calculated. Thesi values

were then compared with Avinger's results, as reported in

his thesis to ensure that the data was precisely replicated

(5:43,44). The SAS program used to execute this step is

Program III of Appendix B.
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STEP 5 - The permanent SAS data file containing the

predicted intercept and slope coefficient parameters from

Step 3 were used in Program IV of Appendix B. Using the

PROC UNIVARIATE PLOT NORMAL command, data was generated

which included the geometric mean of the intercept

parameter, the range of the parameters, and maximum and

minimum values of the parameters. The data were tabled and

included in this research.

STEP 6 - The procedure discussed in Chapter III for

substituting true lot midpoint for the lot plot point

heuristic was accomplished. At this point the matrix spoken

of in Step 2 was increased to a 7x6 matrix with the

additional column being lot size. The resulting program is

shown in Program III of Appendix A.

STEP 7 - Step 3, 4 and 5 were repeated except this time

true lot midpoint data was used.

STEP 8 - The results obtained from Step 7 were compared

with the results obtained from Steps 4 and 5. In particular

the mean predicted first unit cost and slope coefficient

were compared to see which tesulted in a closer prediction

to the true value and which was a more efficient predictor.

STEP 9 - The weighting scheme was changed from

cumulative lot size to lot size. The program is shown in

Program V of Appendix B. Only the results for the WLSBF

technique changed. This program was executed, Steps 4 and 5

were repeated, and the results were once again compared.

The results obtained from this step would provide the means
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for validating the procedures and programs accomplished to

this point.

Research Objective 2

Validate the procedures used to obtain the parameter
estimates and the statistics for both ordinary and
weighted least-squares

Step 1 - Three ANOVA tables from both ordinary and

weighted least-squares were selected. The production runs

were 3, 33, and 82.

STEP 2 - The first unit in the lot, the last unit in

the lot, and the total lot cost were input into a data file

in the Hutchison learning curve program. With these inputs

the software calculated the true lot midpoint using an

iterative process, and calculated the average unit cost for

the lot (15:26-68). This was the same data which were fit

by the least-squares technique in this research.

STEP 3 - The statistics obtained from the Hutchison

learning curve program were compared with those statistic

contained in the ANOVA table. The statistics of concern

were the slope coefficient, learning curve slope, first unit

cost, and coefficient of correlation (R) and determination

(R**2).

Validation of the procedures and program used to this

point would be based on whether the statistics were

approximately equal, allowing for rounding error and

necessary procedural differences.

For Research Objectives 3 and 4, the simulated data

goes from one data set to fifteen. Each data set is unique,
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either using a different error term or seed number. The

data is fitted using both ordinary and weighted

least-squares. Table 2 in Chapter III should be refered to

for peculiarities in the simulation of each data set.

Research Objective 3

Comparing the fitting techniques of ordinary and
weighted least-squares for learning curve data, which
technique is better at predicting the true intercept
and slope, and which technique is a more efficient
estimator of the intercept and slope.

STEP 1 - The method used to generate lot sizes in Step

2 of Research Objective 1 was modified. The changes were

made to C and S of equation 3.3 while the seed number

remained 1515. Table 4 shows the details:

Table 4. Lot Size Characteristics

Lot Number C S
1 5 5
2 15 5
3 25 10
4 40 10
5 40 10
6 40 10
7 N/A N/A

Program IV of Appendix A shows the programming code used in

the simulation of the lot data for this Research Objective,

and Research Objective 4. This placed much tighter controls

on the lot sizes while still allowing some variation. Lot

seven was the remaining number of units required to bring

the total to 210 units.
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STEP 2 - Step 7 of Research Objective I was repeated

for all data sets.

STEP 3 - A table was set up as follows and the data

obtained from Programs III and IV of Appendix B were used to

fill it in.

Fitting / Est Est Range of Range of
Technique/ Intercept Slope Intercept Slope

Parameter Parameter Parameter
Parameter

OLSBF
data set 1

2

15
WLSBF

data set 1
2

15

The data from each of the identical data sets were compared

to determine which technique predicted closer to the true

mean and which technique was the more efficient estimator.

STEP 4 - The data sets were sorted by equal error terms

and combined. Another comparison was made of the

techniques. The belief was that due to the large number of

observations per data set (105,000 units combined into 3,500

lots) the impact of a rare event would be greatly watered

down. Therefore, in order to choose one technique over the

other, that technique would have to be shown best for each

of the three data sets otherwise no conclusion would be

drawn in this particular objective.
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This Research Objective may at first appear to be a

waste of time since the next Research Objective also

compared the least-squares techniques after the bias is

reduced. However, current programs do not reduce the bias,

but some do offer an alternative between ordinary and

weighted least-squares (e.g. Hutchison's learning curve

program). This objective then deals with the realistic

choices available today--should the analyst use ordinary or

weighted least-squares when the option is available.

Research Objective 4

How well does the estimated value for the intercept and
slope approximate the true value. Determine whether
the bias reduction factor proposed by Ilderton or
Daneman is the most appropriate for learning curve
data. Upon determining which factor is most
appropriate, determine how well the bias reduction
factor does in bringing the estimated value of the
intercept to the true value of the intercept.

STEP I - Using the data generated in Steps 2 and 3 of

Research Objective 3, a comparison was made of the predicted

first unit cost against the true first unit cost value of

25,000, and of the predicted slope coefficient against the

true slope coefficient value of -0.321928095. These

comparisons were made by individual data sets, and by

grouping the data set by common error terms.

STEP 2 - Upon comparing the estimated values of the

slope and intercept, determining which bias adjustment

factor, if either, was most appropriate for learning curve

data was simple a matter of seeing whether the bias was on

the low side or the high side. Daneman's recommended bias

adjustment factor adjusts the estimate upwards while
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Ilderton's recommended adjustment factor adjusts the

estimate downward.

STEP 3 - Upon adjusting the intercept and slope

parameter as required Step 1 of this Research Objective was

repeated, only this time using the adjusted data.

Research Objectives 5 and 6 use a different simulated

data set as indicated in Step 1 of Research Objective 5.

The areas of concern were the normality and constant

variance assumption of the ln(Y). Comparisons In these two

objectives would be made between lots, not data sets. Thus,

a significant difference In lot sizes were desired.

Research Objective 5

Test whether the average unit cost data is normally
distributed, in both the transformed and untransformed
state.

STEP 1 - The simulated data for 585 units was combined

into four lots. This required modifications to programs I

and IV of Appendix A. Programs V and VI of Appendix A show

these modified programs. The lot sizes were set, where the

first lot contained one unit, the second lot contained eight

units, the third lot contained sixty-four units, and the

fourth lot contained five hundred and twelve units. The

data set generated by Program VI of Appendix A, was made up

of 100 4x6 matrices, where the columns were the same as

described in Step 2 of Research Objective 1 with the

addition of lot size.

STEP 2 - A SAS program was written (see Program VI of

Appendix B) which in part created four separate data sets.
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The basis for the grouping was lot size, where the first

data set included 100 Y's of lot size one, the second data

set included 100 T's of lot size eight, and so on. The T's

were also transformed using the natural logarithm function

since the distributions of the ln(Y)'s are of equal concern

with the Y's. After the data was grouped and transformed

the SAS statements PROC UNIVARIATE PLOT NORMAL were used

(27:1182). The UNIVARIATE statement is used to "provide

information on the distribution of a variable" (27:1181).

The PLOT statement causes PROC UNIVARIATE to generate

several plots including the rankit plot which was discussed

in the literature review while the NORMAL statement causes

PROC UNIVARIATE to calculate the Kolomogorov-Smirnov

D-statistic again discussed in the literature review

(27:1182).

STEP 3 - The D-statistics obtained from Step 2 were

tabled and compared to the selected critical value. The

hypothesis was that the ln(Y)'s were normally distributed.

The selected critical value was 0.122 which is at the 10

percent significance level. If the computed D-statistic is

greater then the critical value the hypothesis will be

rejected at the 90 percent confidence level.

Research Objective 6

Test to see whether the weighting scheme used in the
ICLOT program and the Hutchison learning curve program
can be improved upon.

STEP 1 - The same data generated in Step 1 of Research

Objective 5 was used.
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STEP 2 - The data obtained from Step 1 were sorted by

lot size, thus creating four sub-data sets. The Y's were

then transformed using the natural logarithm function. The

SAS statements PROC MEANS VAR were used, with the Y's and

the ln(Y)'s as the specified variables. This program would

calculate the variance of both the T's and the ln(Y)'s.

This program is contained in Appendix B as Program VII.

STEP 3 - The variance of the Y's and the ln(Y)'s for

each data set were compared. If weighting by lot size is

correct the variance of the ln(Y)'s for each of the data

sets will differ by the inverse of the lot size. For

example, the variance of the ln(Y)'s for lots of size eight

should be one-eighth as large as the variance of the

ln(Y)'s for lot sizes of one.

STEP 4 - Steps one through three were repeated with the

only change being to the equation used to generate the data

(see Program VII of Appendix A). The following equation was

used:

Y = A * X**b + E

where

E = RANNOR(1111) * 500
A,X,b as previously defined

The difference in this equation is the error term. The

previously generated data used a multiplicative error term

where the data is now being generated with an additive error

term. The reason for this change will be discussed in

the results section for Research Objective 6.
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V. Findings

Chapter Overview

This chapter presents the results of the research

objectives. There were a number of interesting findings

both confirming and refuting some past beliefs. The

findings will be presented by research objectives. Each

Research Objective will be restated, followed by the results

of the research.

Research Objective 1

Compare and contrast results from use of the true lot
midpoint algorithm versus the lot midpoint heuristic
for both ordinary and weighted least-squares.

The first step was to replicate Avinger's results for

both ordinary and weighted least-squares. This provided a

baseline on which improvements and findings could be made.

The changes to Avinger's methodology were made and

documented step by step In order to see the significance of

each change.

After going through many of Avinger's SAS files,

copying them onto the system, and executing the programs,

the replication effort was successfully accomplished.

Table 5 shows the result obtained for the estimate of the

first unit cost parameter which can be compared to the

results in Avinger's thesis (5:43). The one addition to

this table is the inclusion of the geometric mean (GM),

which is the result of taking the average of the logarithms,

for the estimated first unit cost parameter. The arithmetic
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mean (AM) is the value Avinger reports as the mean. As can

be seen from the the table the geometric mean is slightly

below the arithmetic mean. This relationship always holds

true, and is most likely the basis for Daneman's adjustment

factor in multiplicative regression models. This

mathmatical property can best be shown through the following

example.

X ln(X)
23,000 10.04325
24,000 10.08581
25,000 10.12663
26,000 10.16585
27,000 10.20359

The average of the X's (X) is clearly 25,000, and the

average of the ln(X)'s (ln(X)) is 10.125026. If ln(X)

is transformed, using the antilogarithm function, it

might be expected to equal X or 25,000. However, since

logarithms do not preserve averages exp(ln(X)) is equal

to the geometric mean of 24,960 (exp(10.125026)).

ICLOT and the Hutchison learning curve program both yield

the arithmetic mean, since neither program deals with

logarithmic averages in the same fashion depicted in the

example. So the focus will be on the arithmetic mean of the

estimated parameter.

Table 6 shows the results obtained for the estimate of

the slope coefficient, b. Unlike the first unit cost, the

slope coefficient is not calculated by taking the average of

the logarithms, so only the arithmetic mean is reported.
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These results are compared to the results obtained in

Avinger's thesis (5:44).

Table 5. Estimated First Unit Cost
Using the Lot Midpoint Heuristic

True First Unit Cost = 25,000

OLSBF WLSBF
Technique Technique

Maximum 29,167 28,825
Mean:

GM 25,155 25,755
AM 25,222 25,788

Minimum 20,991 22,121
Range:

Total 8,177 6,704
ist-3rd
Quartile 2,587 1,751

Bias:
GM Mean 155 755
AM Mean 222 788

Table 6. Estimated Slope Coefficient

Using the Lot Midpoint Heuristic

True Slope Coefficient -.321928095

OLSBF WLSBF
Technique Technique

Maximum -0.279564 -0.293522
Mean -0.321114 -0.326685
Minimum -0.353979 -0.350645
Range:

Total 0.074415 0.057123
1st-3rd
Quartiles 0.023640 0.014952

Bias:
Mean 0.000814 0.004757

The reason for recording the lst-3rd quartile range is

to eliminate those outliers which may make the range for a

particular technique appear worse or better than it really

is. The bias is simply the predicted parameter's mean minus

53



the true parameter's value. As seen from Avinger's results

the OLSBF technique predicted closer to the true first unit

cost while the WLSBF technique was the more efficient

estimator of the true first unit cost. Both ordinary and

weighted least-squares techniques overestimated the true

value.

Avinger's results indicate that the OLSBF technique

predicted closer to the true slope coefficient while the

WLSBF technique was the more efficient estimator. The OLSBF

parameter estimate equates to an 80.045 percent learning

curve slope, and the WLSBF parameter estimate equates to a

79.736 percent learning curve slope. Note that the bias of

the WLSBF estimated slope coefficient is nearly six times

that of the bias for OLSBF. This result is surprising since

the only apparent difference between the two techniques was

the weighting scheme.

The fact that the OLSBF technique is the best predictor

of the true first unit cost and slope coefficient goes

against what is taught in statistical textbooks as mentioned

in the Literture Review section of this thesis. Much of

this research is to determine whether these results are due

to some anomaly of this data, learning curve data in

general, or due to the methods used for fitting.

The first modification to the methodology was to

incorporate true lot midpoint into a SAS program.

Incorporating true lot midpoint into the program changed the

results significantly as can be seen in Tables 7 and 8.

Apparently bias still exists in the estimate of the first
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unit cost parameter although the bias has been substantially

reduced from 222 to 105 for OLSBF, and from 788 to 170 for

WLSBF. The slope coefficient parameter is extremely close

to the true value which is a marked change for the WLSBF

technique. The bias in the WLSBF estimate of the slope

coefficient parameter was reduced by a factor of greater

than 200, and by more than 20 percent for OLSBF.

Table 7. Estimated First Unit

Cost Using True Lot Midpoint

True First Unit Cost 25,000

OLSBF WLSBF
Technique Technique

Maximum 28,507 28,498
Mean:

GM 25,069 25,145
AM 25,105 25,170

Minimum 21,567 21,814
Range:

Total 6,940 6,684
ist-3rd
Quartiles 2,095 1,517

Bias:
GM Mean 69 145
AM Mean 105 170

Table 8. Estimated Slope Coefficient

Using True Lot Midpoint

True Slope Coefficient = -.321928095

OLSBF WLSBF
Technique Technique

Maximum -0.287046 -0.290792
Mean -0.321270 -0.321950
Minimum -0.348956 -0.349944
Range:

Total 0.061910 0.059151
lst-3rd
Quartiles 0.016381 0.014306

Bias:
Mean 0.000658 0.000022
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These changes, as noted in Tables 7 and 8, were solely

attributable to changing from the lot plot poin heuristic to

true lot midpoint. Even though it appears that bias is not

present in the slope coefficient parameter when true lot

midpoint Is Incorporated, no conclusion was to be drawn

until Research Objective 3 had been accomplished.

While investigating the program's weighting scheme it

was noted that lot plot points were weighted by cumulative

units instead of the more conventional weighting, which by

lot size. Avinger's intent had been to weight by lot size,

as indicated in his thesis (5:25). The figures in the

previous four tables were all generated using cumulative lot

size as the weights in order to demonstrate the impact of

going from the lot midpoint heuristic to the true lot

midpoint. Tables 9 and 10 show how the figures change as

the weighting scheme is changed.

Table 9. Estimated First Unit Cost Using

True Lot Midpoint, and Lot Size as Weights

True First Unit Cost = 25,000

WLSBF
Technique

Maximum 28,291
Mean:

GM 25,125
AM 25,144

Minimum 22,465
Range:

Total 5,826
lst-3rd
Quartile 1,439

Bias:
GM Mean 125
AM Mean 144
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Since the weighting scheme for OLSBF remains unchanged, the

values in Tables 7 and 8 do not apply in Tables 9 and 10.

Table 10. Estimated Slope Coefficient Using

True Lot Midpoint, and Lot Size as Weights

True Slope Coefficient = -0.321928095

WLSBF
Technique

Maximum -0.296578
Mean -0.321774
Minimum -0.348465
Range:

Total 0.051886
ist-3rd
Quartile 0.012480

Bias:
Mean 0.000154

Weighting by lot size versus cumulative lot size improved

all the values except for the arithmetic and geometric mean

of the predicted slope coefficient. The predicted first

unit cost parameter is more than one-half a percent from the

true first unit cost while the predicted slope coefficient

is less than one-twentieth of a percent from it's true

value.

Research objective 2

Validate the procedures used to obtain the parameter
estimates and statistics for both ordinary and weighted
least-squares.

This objective was accomplished to insure that the

processes used in this research, in particular the weighting

scheme and the true lot midpoint algorithm, were the same or

close approximations to the processes used in Hutchison's

learning curve program. Table 11 shows how the relavent
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statistics compared for the three production runs

chosen from data generated in Program V of Appendix B.

Table 11. Comparison of Statistics From SAS ANOVA
Tables and Hutchison's Learning Curve Program

Hutchison ANOVA

OLSBF:
Production Run 3:

First Unit Cost 24,075.87 24,067.38
Slope Coefficient -0.31129 -0.31123
Slope 80.59 80.59
R -0.99864 -0.99864
R**2 0.99728 0.99728

Production Run 33:
First Unit Cost 26,203.10 26,215.90
Slope Coefficient -0.33254 -0.33264
Slope 79.41 79.41
R -0.99902 -0.99902
R**2 0.99804 0.99804

Production Run 82:
First Unit Cost 23,846.22 23,827.22
Slope Coefficient -0.30917 -0.30901
Slope 80.71 80.72
R -0.99935 -0.99935
R**2 0.99869 0.99869

WLSBF:
Production Run 3:

First Unit Cost 24,915.16 24,912.00
Slope Coefficient -0.31949 -0.31946
Slope 80.14 80.14
R -0.99775 -0.99775
R**2 0.99550 0.99550

Production Run 33:
First Unit Cost 27,001.46 27,026.66
Slope Coefficient -0.33935 -0.33954
Slope 79.04 79.03
R -0.99837 -0.99837
R**2 0.99674 0.99674

Production Run 82:

First Unit Cost 24,563.20 24,554.55
Slope Coefficient -0.31576 -0,31569
Slope 80.34 80.35
R -0.99900 -0.99900
R**2 0.99800 0.99800

The immediatp observation is that the first unit cost

estimate, slope coefficient and thus the slope, are not
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exactly equal for the outputs from the Hutchison learning

curve program and those from the corresponding ANOVA table.

However, the coefficient of correlation and thus the

coefficient of determination are identical for the two

outputs. The small differences in the first unit cost and

slope coefficient can be explained. First, there is the

obvious possibility of some rounding error, since

Hutchison's learning curve program was executed on a micro

computer, and SAS was run on a VAX 11/785 mainframe.

Second, determination of true lot midpoint for Hutchison's

program involves an iterative process where the slope used

to calculate the true lot midpoint is closely approximated

(15:33-42). This slope is thus best fit to the sample. In

this research a known slope of 80 percent was used in the

calculation of the true lot midpoint. If the simulated data

had a slope different from 80 percent the the calculation of

the true lot midpoint, which was one of the variables

regressed, would be slightly off and different from the

Hutchison's calculated true lot midpoint. In the SAS PROC

REG procedure the accuracy of the true lot midpoint will

affect the estimate of the first unit cost parameter.

Research Objective 3

Compare the fitting techniques of ordinary and weighted
least-squares for learning curve data. Which technique
predicts closer to the true intercept and slope
parameter? Which technique is the more efficient
estimator of the intercept and slope parameter?

At this point the research expands from one data set to

fifteen. The data sets were considered separately and in
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combination. The rationale used in combining the data sets

were standard deviation, either 0.04, 0.12, or 0.20, used in

the generation of the data. So other than using a different

seed number, the combined data were generated using

identical first unit cost, slope, and standard deviation.

Since all the data sets from here on use true lot midpoints,

and lot size as the weights, the tables will no longer

identify these facts. Also, since there would be limited

value in building complete tables for the individual data

sets, only a summary table was built. Refer back to Table 2

of the methodology section for specific information on how

each data set was generated.

Table 12 shows the total range for both parameters in

each data set, and the estimated values for the first unit

cost and slope coefficient parameters. Next to the

parameter is a plus or minus sign. The plus sign indicates

that the estimate was greater than the true value, and the

minus sign the converse. If bias is not present in the

parameter estimates there should be a good balance between

plus and minus signs.

Comparing OLSBF against WLSBF for accuracy of

prediction showed that the OLSBF technique predicted closer

to the true first unit cost in nine out of fifteen cases.

For predicting the true slope coefficient the WLSBF

technique predicted closer in eleven of the fifteen cases.

In comparing the efficiency of the two techniques based on

range, WLSBF had a smaller range, and thus was more

efficient in twelve of the fifteen cases when predicting the
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first unit cost and slope coefficient parameters. In the

three cases where OLSBF was more efficient than WLSBF, based

on total range, the common feature was the seed number used

in the generation of the random error term (seed = 1958).

Table 12. Summary Table of the Individual Data Sets

Fitting / First Unit Cost Slope Coefficient
Technique/ Parameter Parameter

Estimate Range Estimate Range
OLSBF

Data Set 1 24,990- 1,891 -0.32171+ 0.01922
2 24,981- 2,431 -0.32152+ 0.02147
3 24,970- 1,599 -0.32141+ 0.01342
4 25,036+ 1,919 -0.32218- 0.01643
5 25,070+ 1,969 -0.32232- 0.01870
6 25,082+ 5,689 -0.32110+ 0.05681
7 25,062+ 7,267 -0.32056+ 0.06407
8 25,028+ 4,950 -0.32028+ 0.03985
9 25,228+ 5,847 -0.32254- 0.04967

10 25,344+ 5,882 -0.32306- 0.05550
11 25,328+ 9,602 -0.32025+ 0.09335
12 25,308+ 12,147 -0.31943+ 0.10614
13 25,243+ 8,617 -0.31902+ 0.06791
14 25,583+ 10,025 -0.32270- 0.08370
15 25,798+ 9,851 -0.32371- 0.09134

WLSBF
Data Set 1 25,003+ 1,805 -0.32184+ 0.01614

2 25,011+ 1,443 -0.32183+ 0.01344
3 24,979- 1,830 -0.32148+ 0.01666
4 25,033+ 1,638 -0.32216- 0.01425
5 25,073+ 1,626 -0.32241- 0.01538
6 25,124+ 5,456 -0.32155+ 0.04862
7 25,157+ 4,367 -0.32156+ 0.04031
8 25,050+ 5,474 -0.32047+ 0.04903
9 25,222+ 4,921 -0.32252- 0.04232

10 25,348+ 4,835 -0.32336- 0.04574
11 25,404+ 9,224 -0.32108+ 0.08123
12 25,469+ 7,420 -0.32200- 0.06715
13 25,273+ 9,154 -0.31928+ 0.08024
14 25,577+ 8,305 -0.32275- 0.06978
15 25,799+ 8,055 -0.32417- 0.07551

In all cases the WLSBF technique had a smaller lst-3rd

quartile range. Therefore, in cases 3, 8, and 13 the
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presence of outliers caused the total range to be larger for

WLSBF, but when the influence of the outliers is removed

WLSBF was more efficient.

When the data was combined into three data sets the

expectation was that the values obtained would be more

reliable than they were previously. Or in other words, more

confidence can be placed in the predictions made about the

data. This was accomplished and the results are presented

in Tables 13, 14, and 15. Data set one is the five data

sets which were generated using a standard deviation of 0.04

(data sets 1-5), data set two is the five data sets

generated using a standard deviation of 0.12 (data sets

6-10), and data set three is the five data sets generated

using a standard deviation of 0.20 (data sets 11-15). The

data presented in Tables 13, 14 and 15 are all averages.

Recall that the letter A denotes the first unit cost and b

is an expression related to the rate of learning or the

slope coefficient.

In each of the combined data sets OLSBF outperformed

WLSBF in predicting closer to the true value of the first

unit cost. Notice that for both fitting techniques and for

each data set, the estimated first unit cost parameters were

greater than the true first unit cost. WLSBF was a more

efficient estimator of the first unit cost in each of the

three data sets if efficiency is measured as the dispersion

between the first and third quartiles.
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Table 13. Data Set One (O = 0.04)

OLSBF WLSBF
A b A b

Maximum 26,012 -0.31265 25,893 -0.31441
Mean:

GM 25,007 -0.32183 25,018
AM 25,009 -0.32183 25,020 -0.32194

Minimum 24,477 -0.33050 24,225 -0.32960
Range:

Total 1,535 0.01785 1,668 0.01519
ist-3rd
Quartile 505 0.00450 463 0.00424

Bias:
GM Mean 7 18
AM Mean 9 0.00010 20 0.00001

Table 14. Data Set Two (aT= 0.12)

OLSBF WLSBF
A b A b

Maximum 28,308 -0.29429 27,882 -0.29955
Mean:

GM 25,124 25,162
AM 25,149 -0.32151 25,180 -0.32189

Minimum 22,381 -0.34747 22,871 -0.34476
Range:

Total 5,927 0.05318 5,011 0.04521
lst-3rd
Quartiles 1,498 0.01364 1,426 0.01258

Bias:
GM Mean 124 162
AM Mean 149 0.00042 180 0.00004

Table 15. Data Set Three (G= 0.20)

OLSBF WLSBF
A b A b

Maximum 31,029 -0.27617 30,181 -0.28494
Mean:

GM 25,381 25,451
AM 25,452 -0.32102 25,504 -0.32186

Minimum 20,980 -0.36466 21,749 -0.35972
Range:

Total 10,049 0.08849 8,432 0.07478
lst-3rd
Quartiles 2,511 0.02277 2,415 0.02098

Bias:
GM Mean 381 451
AM Mean 452 0.00091 504 0.00007
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In predicting the slope coefficient parameter, WLSBF

was not only the more efficient predictor, it also predicted

closer to the true slope coefficient. In the worst case

(data set three), the estimated slope coefficient parameter

was only one-tenth of one percent from the true slope

coefficient for the WLSBF technique. The bias in the

estimated slope coefficient for the OLSBF was greater than

or equal to ten times that of the bias in the estimated

slope coefficient for WLSBF.

This leads to the next objective where the bias created

by using the logarithmic transformation Is reduced. The

results from this objective indicate that bias is not

introduced In the slope coefficient which agrees with the

statement made by Daneman (10:6). On the other hand, bias

is apparent in the first unit cost. This could be tested

using the Wilcoxon sign ranked W-statistic (21:492-498), or

by simply relating the occurance of overestimating the true

value (+) as the head of a coin and underestimating the true

value (-) as the tail on a coin. Data sets 1-5, 6-10, and

11-15 must be considered separatly since using the same seed

value eliminated the independence of the data sets (data set

1, 6, and 11 are not independent, etc). The probability of

having five overestimates in five observation would then be

0.05**5 or approximately three percent, given the data (or

coin) Is unbiased. This is the same value the Wilcoxon

W-statistic returns. This unlikely event occurred for data

sets 6-10 and 11-15 for both ordinary and weighted
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least-squares which leads to rejecting the hypothesis that

the data is unbiased at the 97 percent confidence level.

Research Objective 4

Determine how well the estimated value for the
Intercept and slope approximate the true value.
Determine whether the bias reduction factor proposed by
Ilderton or the one proposed by Daneman is the most
appropriate for learning curve data. Upon determining
which bias reduction factor is most appropriate,
determine if the factor's use will result in unbiased
estimates.

The results obtained from the previous research

objective strongly indicate that the direction of the bias

in the estimated first unit cost parameter is on the high

side, with only four of the thirty data sets predicting

first unit costs below the true value. Of these four data

sets all were generated using a standard deviation of 0.04.

The same results strongly indicate that no bias exists in

the estimate of the slope coefficient, where seventeen data

sets have predicted values above the true value and thirteen

data sets have predicted values below the true value. Thus,

no correction factor was investigated for the predicted

slope coefficient.

The bias reduction factor, for the estimated first unit

cost, recommended by Ilderton (16:43-46) is in the correct

direction In that it reduces the estimated value while the

bias reduction factor recommended by Daneman for nonweighted

regression would increase the bias that already exists.

Only an approximation to the Ilderton bias reduction factor

was used in this objective. The factor used was

exp(-MSE/2) , where MSE is a measure of the variance of the
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data, or the standard deviation squared. Therefore, the

estimated first unit cost parameter in data sets 1-5 was

multiplied by exp(-(0.04**2)/2) or 0.9992; the estimated

first unit parameter in data sets 6-10 was multiplied by

exp(-(0.12**2)/2) or 0.9928; and, the estimated first unit

cost parameter in data sets 11-15 was multiplied by

exp(-(0.20**2)/2) or 0.9802. Table 16 shows the results

when the bias reduction factor is used. The same plus and

minus sign notation as explained in the previous objective

was used.

For OLSBF the reduced bias results predicted closer to

the true first unit cost in seven of the fifteen data sets.

For WLSBF the reduced bias results did much better,

predictinng closer to the true first unit cost in twelve of

the fifteen data sets. Comparing the OLSBF and WLSBF

techniques, the later predicted closer to the true first

unit cost in twelve of the fifteen reduced bias results.

The results from Table 12 showed only four data sets

with estimated first unit costs below the true value. For

OLSBF with the bias adjustment factor incorporated, there

are now eighteen data sets with predicted first unit cost

parameters below the true value. Using the coin flipping

example again it is clear that three underestimates and two

overestimates would lead towards acceptance that the data is

not biased (remember data sets with like seed numbers are

not Independent). This was the case for WLSBF data sets

1-5, 6-10, and 11-15. The bias adjustment factor is

apparently inappropriate for OLSBF since the results
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indicate that the bias has simply been reversed from

overestimating to underestimating the true first unit cost.

Table 16. Estimated First Unit Cost
Parameters with Reduced Bias

Fitting / First Unit Cost
Technique/ Parameter Estimate

Biased Reduced Bias
OLSBF:

Data Set 1 24,990- 24,970-
2 24,981- 24,961-
3 24,970- 24,950-
4 25,036+ 25,016+
5 25,070+ 25,050+
6 25,082+ 24,902-
7 25,062+ 24,882-
8 25,028+ 24,848-
9 25,228+ 25,047+

10 25,344+ 25,162+
11 25,328+ 24,826-
12 25,308+ 24,807-
13 25,243+ 24,743-
14 25,583+ 25,076+
15 25,798+ 25,287+

WLSBF:
Data Set 1 25,003+ 24,983-

2 25,011+ 24,991-
3 24,979- 24,959-
4 25,033+ 25,013+
5 25,073+ 25,053+
6 25,124+ 24,944-
7 25,157+ 24,977-
8 25,050+ 24,870-
9 25,222+ 25,041+

10 25,348+ 25,166+
11 25,404+ 24,901-
12 25,469+ 24,965-
13 25,273+ 24,773-
14 25,557+ 25,071+
15 25,799+ 25,288+

If any questions as to whether the data remained biased

still exist Table 17 should remove all doubt. Here the data

sets were once again combined. The reduced bias estimates

for OLSBF are now all below the true value for the first
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unit cost. The larger the standard deviation used in

simulating the data set the farther below the true value.

However, the reduced bias estimates for WLSBF are identical

to the true first unit cost value regardless of the standard

deviation used in simulating the data sets.

Table 17. A Comparison, on Average, of Biased and Reduced
Biased Estimates for the First Unit Cost Parameters

Fitting Standard Biased Reduced Bias
Technique Deviation Estimate Estimate

OLSBF 0.04 25,009 24,989
OLSBF 0.12 25,149 24,968
OLSBF 0.20 25,452 24,948
WLSBF 0.04 25,020 25,000
WLSBF 0.12 25,180 25,000
WLSBF 0.20 25,500 25,000

Research Objective 5

Test whether the average unit cost data is normally
distributed, in both the transformed and untransformed
state.

The following null (Ho) and alternate (Ha) hypotheses

were formulated in order to test whether the average unit

cost data, ln(Y), are normally distributed. The level of

significance for the test was chosen to be 0.10 and the test

statistic was the Kolomogorov-Smirnov D-statistic.

Ho: The ln(7)'s are normally distributed
Ha: The ln(Y)'s are not normally distributed

Ho will be accepted if the calculated D-statistic is less

than or equal to 0.122, and will be rejected if the

D-statistic is greater than 0.122. Rejection of the Ho

leads to the conclusion that the statistics obtained from
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use of the OLSBF and WLSBF techniques are flawed since the

assumption of normality was violated. Table 18 shows the

calculated D-statistics for the ln(Y)'s for lot sizes 1, 8,

64, 512. The D-statistic for the Y's was also calculated.

It was believed that the Y's would exhibit a nonnormal

distribution if the ln(Y)'s exhibited a normal distribution,

and visa-versa. Note in Table 18, that this was not the

case. In fact the calculated D-statistics seem to indicate

that the distribution of the ln(Y)'s and the Y's are

similar. The D-statistics for both remain below the

critical value, and when the calculated D-statistic

increases or decreases for one the same trend occurs in the

other. These results would lead to acceptance of Ho,

meaning that the ln(Y)'s and the Y's are normally

distributed. This peculiarity beckons further research.

Table 18. D-Statistic for ln(Y)'s and Y's

Lot Size D-ln(Y)'s D-Y's
1 0.056855 0.072321
8 0.048555 0.051683

64 0.100895 0.101462
512 0.080249 0.079414

Research Objective 6

Test to see whether the weighting scheme used in the
ICLOT program and the Hutchison learning curve program
can be improved upon.

The objective here was to calculate the variance of

production lot data for lots which incrementally increased

in size. Recall that the variance for a lot of size n is
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a /n. Therefore, the hypothsis was that if the weighting

scheme used in ICLOT and the Hutchison learning curve

program was correct then the variance for a lot of size n

would be twice the variance of a lot of size 2*n. The

calculated variance of the ln(Y)'s and the Y's were for lots

of size 1, 8, 64, and 512. There were 100 ln(i)'s and Y's

simulated for each lot size. Table 19 shows the calculated

variance for each data set.

Table 19. Calculated Variances for ln(Y)'s
and Y's Using a Multiplicative Error Term

Lot Size Variance-ln(Y)'s Variance-Y's
1 0.0160000 10715181.79
8 0.0019500 359437.84

64 0.0002294 11328.92
512 0.0000283 367.08

If the data is homoscedastic the variance will decrease by

the inverse of the increase in the lot size. For example,

the variance for the data from lot sizes of eight would be

one-eight that of the variance of the data from lot sizes of

one given that the data is homoscedastic. When the data was

generated using a multiplicative error term the variance of

the ln(Y)'s decreases by a factor of 8.2, 8.5, and 8.1 for

lot sizes 1 to 512 respectively. For the Y's the variance

decreases by a factor of 29.8, 31.7, and 30.9 for lot sizes

1 to 512 respectively. By generating the data with an

additive error term the results dramatically change as Table

20 depicts. Here the variance of the ln(Y)'s decreases by a

factor of 3.1, 2.3, and 2.2 for lot sizes 1 to 512
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respectively, and the variance of the T's decreases by a

factor of 10.8, 8.4, and 8.3 for lot sizes 1 to 512

respectively.

Table 20. Calculated Variance for ln(Y)'s
and Y's Using an Additive Error Term

Lot Size Variance-ln(Y)'s Variance-Y's
1 0.00044300 278382.44
8 0.00014290 25855.33

64 0.00006304 3069.88
512 0.00002893 370.29

If weighting by lot size is correct for the ln(Y)'s

generated using the multiplicative error term, the expected

variance for lots of size 1, 8, 64, and 512 would be

0.0144/n respectively. The lot data simulated had

variances relatively close to the expected variance as Table

19 shows. This did not hold true for the ln(Y)'s generated

using the additive error term. Here the expected variance

was 0.004/n Only the ln(i) for lot size one was close,

with the variance of the remaining ln(Y)'s exhibiting

reductions by factors between two and three instead of

eight.

Note that the Y's generated with the additive error

term show a reduction of approximately a factor of eight.

However, when lot data is generated with the multiplicative

error term, the variance is reduced by factors of between 29

and 31. The expected variance of the Y's generated with the

multiplicative error term is 10,159,654/n , which was

approximated only when the lot size was one. The expected
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variance of the 7's generated with the additive error term

is 250,000/n , which as mentioned above was closely

approximated.

Chapter VI which follows drew conclusions from the six

Research Objectives where possible. Where no conclusion

could be drawn, recommendations for further research were

made.
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VI. Conclusions and Recommendations

Chapter Overview

This chapter covers the conclusions of this research

based on the results of the six research objectives. The

conclusions will then be followed with some recommendations

for further research pertaining to the topic of learning

curves.

Summary of Findings

The initial part of this research involved a comparison

of the true lot midpoint algorithm to the lot plot point

heuristic. Use of the lot plot point heuristic created bias

in both the estimated first unit cost parameter for both

ordinary and weighted least-squares in excess of the true

lot midpoint algorithm. Yet, bias still exists. Use of the

lot plot point heuristic, unlike true lot midpoint, created

bias in the slope coefficient when using the WLSBF

technique. No bias exists in the slope coefficient for

either ordinary or weighted least-squares when the true lot

midpoint algorithm was used. Therefore, the slope

coefficient parameter estimated by the ICLOT program and the

Hutchison learning curve program is correct while the

estimated slope coefficient for both programs is biased on

the high side.

An approximation of the bias reduction factor

recommended by Ilderton was tested. Ilderton's adjustment

factor was based mainly on the amount of variance contained
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in the fitted data while the approximate bias adjustment

factor was based entirely on the variance of the data. The

formula used to reduce the bias in the estimate of the first

unit cost parameter was exp(-MSE/2) . Average biases of

two percent were present in the estimated first unit cost

parameters when the standard deviation used in simulating

the data was 0.20. The biases were significantly less when

the standard deviations were 0.12 and 0.04. For most DoD

programs this bias would result in small overestimates of

cost. These overestimates may be tolerated, however, they

are unnecessary if the analyst is aware of the presence of

bias in the first unit cost parameter.

Following is a table which presents scenarios of the

effects that this bias may have on DoD programs. Understand

that the estimated cost of the first unit affects the

cost estimate in many areas of a program besides hardware

costs. It affects the remaining hardware costs and any

costs which are factored off that hardware. In the example

the unbiased first unit cost is ten million dollars, the

learning curve slope is 90 percent, and the number of

production units is 1,000.

Table 21. Effect of Bias on an Estimate

Hardware Estimate
MSE Biased Unbiased Overestimate

0.05**2 $4,126,873,731 $4,121,718,360 $ 5,155,171
0.10**2 4,142,378,560 4,121,718,360 20,660,200
0.15**2 4,168,349,499 4,121,718,360 46,631,139
0.20**2 4,204,982,594 4,121,718,360 83,264,234

74



with the budget cuts currently being experienced by the DOD,

programs can not afford unnecessary overestimates.

The techniques of OLSBF and WLSBF were compared with a

surprising result. Due to the bias in the estimated first

unit cost parameter OLSBF predicted closer to the true value

than did WLSBF. In general WLSBF was a more efficient

estimator, except that (for the data simulated) OLSBF had a

smaller prediction range than WLSBF when a standard

deviation of 0.04 was used in the data simulation. So for

analysts using the Hutchison learning curve program, with no

intent to use the bias reduction factor, the best point

estimate is obtained by using OLSBF while a tighter

confidence band about the point estimate would be obtained

using WLSBF.

If the bias reduction factor is used the WLSBF

outperforms OLSBF for both efficiency and accuracy of

prediction. The recommendation is to use the WLSBF

technique (automatic with ICLOT) to get the first unit cost

estimate, then adjust for the bias.

After running the tests for normality and constant

variance it seems reasonable, to assume that the data is

normally distributed and that weighting by lot size is the

appropriate weighting scheme for a learning curve model

based on a multiplicative error term. If the learning curve

model is based on an additive error term both the linear

model and the weighting scheme would require investigation.
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Areas for Further Research

The most promising area for further research is in the

learning curve model itself. Variables which result in cost

reduction, besides cumulative quantity should be

investigated. While cumulative quantity certainly provides

workers and managers with the opportunity to "learn" are

there variables in a production effort which more closely

relate to the rate of cost reductions? Factors such as

production engineering, production rate, quality assurance,

technology, and management philosophy may be the key to not

only predicting the rate of learning but in actively

managing the rate of learning.

Developing programs which better fit a curve to

production data is another wide open area for further study.

This research showed that programming the bias reduction

factor into the ICLOT and Hutchison learning curve programs

(when the WLSBF option is chosen) would be an important step

to providing better program cost estimates. Calculating a

bias adjustment factor for the OLSBF technique is still

needed. This research showed that the bias adjustment

factor, exp(-MSE/2) , only worked for the first unit cost

parameters obtained using the WLSBF technique. It merely

reversed the bias in the estimated first unit cost

parameters obtained using the OLSBF technique.

Investigating the potential use for non-linear regression

and nonparametric regression in fitting learning curve data

could be fruitful, along with developing programs which

utilize these fitting techniques. Developing programs which
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allow the user to fit learning curves such as the Stanford-B

model (Y = A * (X +B)**b) , a model which takes into

account the contractor's prior experience on similar

programs; and, models which- take into account production

breaks could prove useful in the cost estimating community.

Finally, further examination into actually learning

curve data should be accomplished. This may answer

questions about autocorrelation in learning curve data,

which violates the assumption of independence. Adding the

Durbin-Watson test statistic to learning curve programs

would provide the Informed analyst with information on

potential independence problems which might warrant further

examination of the data. Examination as whether the

multiplicative error term (constant percentage variance) or

the additive error term (constant variance) is most

appropriate. If the multiplicative error term is more

appropriate giving added weight to lots later in the

production process makes sense, since both contractor and

government have gained significant experience in costing

each system.
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APPENDIX A

Sample SAS Programs for Data Simulation

These proqrams were written and run using the VMS

Version of SAS, Release 5.16. Reference SAS Institute
Inc. (1985).
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Program I - This program simulates unit cost learning curve
data in logarithmic form, given a learning curve slope of 80
percent, a first unit cost of 25,000, and an error term of
0.12. The data is then tranformed to it's standard state
using the antilogarithm fuction. One hundred production
runs with 210 units per production run are generated. The
output is unit number, cost per unit, and cumulative total
cost.

1 DATA ONE;
2 A = LOG(25000);
3 B = LOG(.8)/LOG(2);
4 C = .12;
5 DO J = 1 TO 100;
6 TOTCOST 0;
7 DO I = 1 TO 210;
8 LNX LOG(I);
9 Z = RANNOR(1446);

10 LNY = A + (B * LNX) + (C *Z);
11 COST = EXP(LNY);
12 TOTCOST = TOTCOST + COST;
13 FILE NORMAL;
14 PUT I COST TOTCOST;
15 END;
16 END;
17 PROC PRINT;
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Program II - This program simulates production lot data
using the data from Program I of Appendix A. A 7x5 matrix
is set up to divide each production run into seven lots,
with the following lot data in each matrix: cumulative
units, cumulative cost, lot cost, heuristic lot plot point,
and average unit cost per lot. One hundred such matrices
are generated.

1 DATA TWO;
2 INFILE NORMAL;
3 INPUT N1-N630;
4 ARRAY NUM(6301 NI-N630;
5 ARRAY COST[210] YY1-YY21O;
6 ARRAY LOT[7,51 LI-L35;
7 ARRAY TOTCOST[2101 TCl-TC210;
8 DO I = 1 TO 210;
9 COST[I] = NUMI * 3 - 1];

10 TOTCOST[I] = NUM[I * 3];
11 END;
12 LABELl: TEMP = 10 * RANUNI(1515);
13 TEMP = ROUND(TEMP,I);
14 IF TEMP> 10 OR TEMP< 2 THEN GO TO LABELl;
15 LOT[1,11 = TEMP;
16 LOT[1,2] = TOTCOST(TEMP];
17 LOT[1,31 = TOTCOSTfTEMP];
18 IF TEMP = 10 THEN LOT(1,41 = LOT(1,1]/3;
19 ELSE LOT(1,41 = LOT[1,1]/2;
20 LOT(1,51 = LOT[1,3]/TEMP;
21 LABEL2: TEMP = 100 * RANUNI(1515);
22 TEMP = ROUND(TEMP,1);
23 IF TEMP> 25 OR TEMP< 15 THEN GO TO LABEL2;
24 LOT[2,11 = TEMP + LOT[1,1];
25 LOT(2,21 = TOTCOST[LOT[2,1]];
26 LOT[2,31 = LOT[2,2] - LOT[1,21;
27 LOT(2,4] = TEMP/2 + LOT[J1,1];
28 LOT[2,51 = LOT[2,3]/TEMP;
29 LABEL3: TEMP = 100 * RANUNI(1515);
30 TEMP = ROUND(TEMP,1);
31 IF TEMP> 30 OR TEMP< 20 THEN GO TO LABEL3;
32 LOT[3,1] = TEMP.+ LOT[2,1];
33 LOT(3,2] = TOTCOST(LOT[3,1]1;
34 LOT[3,31 = LOT[3,2] - LOT[2,2];
35 LOT13,4] = TEMP/2 + LOT12,11;
36 LOT(3,5] = LOT[3,31/TEMP;
37 LABEL4: TEMP = 100 * RANUNI(1515);
38 TEMP = ROUND(TEMP,1);
39 IF TEMP> 35 OR TEMP< 25 THEN GO TO LABEL4;
40 LOT[4,1] = TEMP + LOT(3,11;
41 LOT(4,2] = TOTCOST[LOT[4,1]];
42 LOT[4,3] = LOT[4,2] - LOT[3,2];
43 LOT(4,41 = TEMP/2 + LOT[3,1];
44 LOT[4,5] = LOT[4,31/TEMP;
45 LABEL5: TEMP = 100 * RANUNI(1515);
46 TEMP = ROUND(TEMF,I);
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47 IF TEMP> 40 OR TEMP< 30 THEN GO TO LABEL5;
48 LOT[5,11 = TEMP 4- LOT[4,1];
49 LOT[5,2] = TOTCOST[LOTC5,1]];
50 LOT[5,3) = LOT(5,21 - LOT[4,21;
51 LOT[5,4] = TEMP/2 + LO 14,1];
52 LOT[5,5] = LOTt5,3I/TEMP;
53 LABEL6: TEMP = 100 * RANUNI(i5iS);
54 TEMP = ROUND(TEMP,1);
55 IF TEMP> 50 OR TEMP< 40 THEN GO TO LABELG;
56 LOT(6,1] = TEMP + LOT[5,1];
57 LOT(6,21 = TOTCOST[LOTE6,1]1;
58 LOTE6,31 = LOTf6,21 - LOT(5,21;
59 LOTf6,4] = TEMP/2 + LOT[5,1];
60 LOT[6,5] = LOT(6,31/TEMP;
61 LABEL7: TEMP = 210 - LOT(6,11;
62 LOTE7,1) = TEMP + LOT[6,1];
63 LOTf7,21 TOTCOST[LOTf7,111;
64 LOT[7,3) = LOT[7,2) - LOT[6,2];
65 LOT[7,4] = TEMP/2 4- LOTE6,1];
66 LOT[7,5] = LOT[7,3]/TEMP;
66 FILE ULOTGEN;
67 DO I = 1 TO 7;
58 PUT LOT[I,1] LOT[I,21 LOTfI,3] LOT[I,41

LOTE 1,5];
69 END;



Program III - This program simulates production lot data
usjing the data from Program I of AppendiX A. A 7x6 matrix
is set up to divide the each production run into seven lots,
with the following lot data in each matrix: cumulative
units, cumulative cost, lot cost, true lot midpoint, average
unit cost per lot, and lot size. The difference between
this program and Program II is true lot midpoint, and the
inclusion of a column for lot size. One hundred sluch
matrices are generated.

1 DATA TWO;
2 INFILE NORMAL;
3 INPUT N1-N630;
4 ARRAY NUM[6301 Nl-N630;
5 ARRAY COST[2lO] YYl-YY210;
6 ARRAY LOT(7,6] L1-L42;
7 ARRAY TOTCOST(21O] TC1-TC210;
8 DO I =1 TO 210;
9 COST(I] NUM[I * 3 -1];

10 TOTCOST[I] = NUM[I *31;

11 END;
12 LABELl: TEMP = 10 * RANUNI(1515);
13 TEMP =ROUND(TEMP,l);
14 IF TEMP> 10 OR TEMP( 2 GO TO LABELl;
15 LOT[l,l] = TEMP;
16 LOT[1,21 = TOTCOST(TEMP];
17 LOT[1,31 = TOTCOSTITEMP];
18 LOT(1,41 = 0;
19 B = LOG(.8)/LOG(2);
20 DO I 1 TO LOTf1,1];
21 DUN LOT[l,41 + (1**B3);
22 LOT(1,4] = DUM;
23 END;
24 LOT[1,41 = (LOTtl,41/LOTtl,1])**(l/B);
25 LOTf1,5] = LOT(1,31/TEMP;
26 LOT(l,61 = LOT[l,l];
27 LABEL2: TEMP = 100 * RANUNI(1515);
28 TEMP =ROUND(TEMP,l);
29 IF TEMP> 25 OR TEMP< 15 THEN GO TO LABEL2;
30 LOT(2,1J = TEMP + LOT[1,11;
31 LOTE2,2] = TOTCOSTCLOT[2,11];
32 LOTE2,3] = LOT[2,21 - LOT(l,21;
33 LOT[2,411 = 0;
34 Z =LOT[2,1] - LOTE1,1];
35 DO I I TO Z;
36 DUM =LOT(2,4] + ((I + LOT[l,1])**B);
37 LOT(2,4] = DUM;
38 END;
39 LOTE2,4] = (LOTE2,4]/Z)**(l/B);
40 LOT[2,5] = LOT[2,31/TEMP;
41 LOT(2,6] = LOT(2,11 - LOT[1,11;
42 LABEL3: TEMP = 100 * RANUNI(1515);
43 TEMP = ROUND(TEMP.1);
44 IF TEMP> 30 OR TEMP< 20 THEN GO TO LABEL3;
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45 LOT(3,1] = TEMP + LOTE 2,1];
46 LOTf3,2] = TCTCOST(LOT[3,1]];
47 LOTE3,3] = LOTE3,2] - LOT[2,2];
48 LOTf 3,4] = 0;
49 Z = LOT(3,1] - LOT[2,1];
50 DO I1 1 TO Z;
51 DUM =LOTE3,4] + ((I + LOT[2,11)**B);
52 LOT[3,4] = DUM;
53 END;
54 LOT[3,4] = (LOTE3,4]/Z)**(l/B);
55 LOT(3,5] = LOT[3,31/TEMP;
56 LOTE3,6] = LOT(3,1] - LOT(2,11;
57 LABEL4: TEMP = 100 * RANUNI(i5iS);
58 TEMP = ROUND(TEMP,l);
59 IF TEMP> 35 OR TEMP< 25 THEN GO TO LABEL4;
60 LOTt4,1] = TEMP + LOT[3,11;
61 LOT(4,2] TOTCOSTCLOT(4,1]];
62 LOTL4,3] = LOT[4,2] - LOT[3,2];
63 LOTf4,4] = 0;
64 Z = LOT(4,11 - LOT[3,1];
65 DO I1 1 TO Z;
66 DUM =LOTE4,41 + ((I + LOTfi3,1])**B);
67 LOT[4,4] DUM;
68 END;
69 LOT[4,4] = (LOT[4,4]/Z)**(l/B);
70 LOT[4,5] LOT[4,3]/TEMP;
71 LOT[4,6] = LOT[4,1] - LOT(3,1];
72 LABEL5: TEMP =100 * RANUNI(1515);
73 TEMP = ROUND(TEMP11);
74 IF TEMP> 40 OR TEMP( 30 THEN GO TO LABEL5;
75 LOT[5,1] TEMP + LOT[4,1];
76 LOT(5,21 TOTCOSTCLOT[5,111;
77 LOT[5,3] LOT[5,21 - LOT[4,21;
78 LOT(5,4] = 0;
79 Z =LOT(5,1] - LOT(4,1];
80 DO I1 1 TO Z;
81 DUM =LOT[5,4] + ((I + LOT[4,1])**B);
82 LOT[5,4] DUM;
83 END;
84 LOT[5,41 = (LOT(5,4]/Z)**(l/B);
85 LOTE5,5] = LOT(5,3]/TEMP;
86 LOT15,6] = LOT[5,1] - LOT(4,1];
87 LABEL6: TEMP = 100 * RANUNI(1515);
88 TEMP = ROUND(TEMP,1);
89 IF TEMP> 50 OR TEMP< 40 THEN GO TO LABEL6!
90 LOT(6,1] TEMP + LOT[5,11;
91 LOT(6,2] = TOTCOST(LOT(6,111;
92 LOT(6,31 = LOT(6,2] - LOT[5,2];
93 LOT(6,4] = 0;
94 Z = LOT(6,1] - LOT[5,1];
95 DO I I TO Z;
96 DUM =LOT(6,41 +- ((I + LOT(5,1])**B);
97 LOT[6,4] = DUM;
98 END;
99 LOT[6,4] = (LOT(6,41/Z)**(1/B);
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100 LOT(6,5] = LOT[6,3)/TEMP;
101 LOT(6,6] = LOT[6,1] - LaTE 5,11;
102 TEMP = 210 - LOT[6,1I;
103 LOT(7,1] = 210;
104 LOT[7,2] = TOTCOST(LOTt7,lfl;
105 LOTE7,3) = L.OT[7,2] - LOT[6,2];
106 LOT(7,4] = 0;
107 Z = LOT(7,11 - LOT[6,1];
108 DO 1 1 TO Z;
109 DUM LOT[7,43 i- ((I +- LOT[6,1I)**B);
110 LOT[7,4] = DUM;

111 END;
112 LOT[7,4] (LOT[7,4]/Z)**(l/B);
113 LOT[7,51 = LOT[7,31/TEMP;
114 LOT[7,61 = LOT[7,11 - LOTE6,1];
115 FILE ULOTGEN2;
116 DO I = 1 TO 7;
117 PUT LOTEII,1] LOT[I,2] LOT(I,3] LOT[I,4]

LOT[I,5] LOT[I,6];
118 END;

84



Program IV - This program simulates production lot data
using the data from Program I of Appendix A. A 7x6 matrix
is set up to divide each production run into seven lots,
with the following data in each matrix: cumulative units,

cumulative cost, lot cost, true lot midpoint, average unit
cost per lot, and lot size. The difference between this
program and Program III is the lot size generation. One
hundred such matrices are generated.

1 DATA TWO;
2 INFILE NORMAL;
3 INPUT N1-N630;
4 ARRAY NUM[630] N1-N630;
5 ARRAY COST[2i0] YY1-YY210;
6 ARRAY LOT[7,6] LI-L42;
7 ARRAY TOTCOST[210] TCl-TC210;
8 DO I = 1 TO 210;
9 COST[II = NUM[I * 3 -1;

10 TOTCOST(I] = NUM(I * 3];
11 END;
12 TEMP = 5 + (5 * RANUNI(1515));
13 TEMP = ROUND(TEMPI);
14 LOT(1,1] = TEMP;
15 LOT[,2] = TOTCOST[TEMP];
16 LOT[l,3] = TOTCOST[TEMP];
17 LOT[1,4] = 0;
18 B = LOG(.8)/LOG(2);
19 DO I = 1 TO LOT[1,1];
20 DUM = LOT[I,4] + (I**B);
21 LOT[1,4] = DUM;
22 END;
23 LOT[1,4J = (LOT[1,4]/LOT[1,1])**(1/B);
24 LOT[I,5] = LOT[1,3]/TEMP;
25 LOT[1,6] = LOT(1,1];
26 TEMP = 15 + (5 * RANUNI(1515));
27 TEMP = ROUND(TEMP,1);
28 LOT[2,1] = TEMP + LOTI,1];
29 LOT[2,21 = TOTCOST[LOT[2,1]];
30 LOT[2,3] = LOT[2,2] - LOT[1,2J;
31 LOT(2,4] = 0;
32 Z = LOT(2,1] - LOT(I,1];
33 DO I = 1 TO Z;
34 DUM = LOT[2,4] + ((I + LOT[1,1])**B);
35 LOT[2,41 = DUM;
36 END;
37 LOT[2,4] = (LOT[2,4]/Z)**(1/B);
38 LOT[2,5] = LOT[2,3]/TEMP;
39 LOT[2,6] = LOT[2,1] - LOT1,1];
40 TEMP = 25 + (10 * RANUNI(1515));
41 TEMP = ROUND(TEMP,I);
42 LOT(3,1J = TEMP + LOT[2,11;
43 LOT[3,2] = TOTCOST[LOT[3,1]];
44 LOT[3,3] = LOT[3,2] - LOT[2,2];
45 LOTE3,41 = 0;

or,



46 Z = LOT[3,11 - LOTE2,1];
47 DO ,L =1 TO Z;
48 DUM =LOT(3,41 + ((I + LOTt2,lfl**B);
49 LOT(3,41 = DUM;
50 END;
51 LOT[3,41 = (LOTE3,4]/Z)**(l/B);
52 LOTf3,5] = LOT(3,3]/TEMP;
53 LOT[3,6] = LOT[3,1] - LOT(2,1];
54 TEMP = 40 + (10 * RANUNI(1515));
55 TEMP = ROUND(TEMP,1);
56 LOT[4,1] = TEMP + LOT[3,1J;
57 LOTE4,2] = TOTCOST(LOT[4,1]1;
58 LOTE4,3] = LOT[4,21 - LOTt3,2];
59 LOT(4,4] 0;
60 Z =LOT[4,11 - LOT[3,1];
61 DO 1 1 TO Z;
62 DUM =LOT(4,4] + ((I + LOT[3,1])**B);
63 LOT[4,4] DUM;
64 END;
65 LOT[4,4] = (LOT(4,4]/Z)**(1/B);
66 LOT(4,5] LOT[4,3]/TEMP;
67 LOTE4,61 =LOTE4,1] - LOTE3,11;
68 TEMP = 40 + (10 * RANUNI(1515));
69 TEMP = ROUND(TEMP,1);
70 LOTES,1] = TEMP + LOT[4,11;
71 LOT(5,2] TOTCOSTELOTE5,111;
72 LOTf5,3] = LOT(5,21 - LOT(4,2];
73 LOT[5,41 = 0;
74 Z = LOTC5,11 - LOT(4,1];
75 DO 1 1 TO Z;
76 DUN LOT[5,4) + ((I + LOT(4,11l**B);
77 LOT[5,41 =DUM;
78 END;
79 LOT[5,41 = (LOT[5,4]/Z)**(1/B);
80 LOT15,51 = LOTII5,3]/TEMP;
81 LOTE5,6] = LOTC5,1] - LOT[4,1J;
82 TEMP = 40 + (10 * RANUNI(1515));
83 TEMP = ROUND(TEMP,1);
84 EOT16,11 = TEMP + LOTf5,1];
85 LOT(6,2] = TOTCQSTCLOT[6,1J];
86 LOTC6,31 = LOT(6,2] - LOT[5,2];
87 LOT[6,41 = 0;
88 Z = LOTf6,1] - LOT[5,1];
89 DO I1 1 TO Z;
90 DUM LOT!16,4] + ((I + LOT(5,11)**B);
91 LOTE6,4] = DUM;
92 END;
93 LOTt6,41 = (LOT(6,41/Z)**(l/B);
94 LOT(6,51 = LOT(6,31/TEMP;
95 LOT(6,61 = LOT(6,1] - LOT(5,1J;
96 TEMP = 210 -LOTE6,1];

97 LQT(7,11 =210;

98 LOT(7,2J TOTCOSTtLOT[7,1]];
99 LOT17,3] LOT[7,21 - LOTt6,21;

100 LOT[7,4] 0;



101 Z = LOT(7,11 - LOT[6,1];

102 DO 1 1 TO Z;
103 DUM LOTE7,4] + ((I + LOTt6,1])**B);

104 LOT(7,4] = DUM;
105 END;
106 LOT[7,4J = (LOT(7,4]/Z)**(1/B);
107 LOT[7,5] = LOT[7,3)/TEMP;
108 LOT[7,6] = LOTE7,1] - LOT[6,1J;
109 FILE ULOTGEN2;
110 DO I = 1 TO 7;
i1l PUT LOT(I,11 LOT[I,2] LOT[I,31 LOT[I,4]

LOTEI,5] LOT[I,6I;

112 END;
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Program V - This program simulates unit cost learning curve
data in logarithmic form, given a learning curve slope of 80
percent, a first unit cost of 25,000, and an error term of
0.12. The data is then transformed to it's standard state
using the antilogarithm function. One hundred production
runs of 585 units per production run are generated. The
output is unit number, cost per unit, and cumulative total
cost.

1 DATA ONE;
2 A = LOG(25000);
3 B = LOG(.8)/LOG(2);
4 C = .12;
5 DO J = 1 TO 100;
6 TOTCOST = U;
7 DO I = 1 TO 585;
8 LNX = LOG(I);
9 Z = RANNOR(1111);

10 LNY = A + (B * LNX) + (C *Z);
11 COST = EXP(LNY);
12 TOTCOST = TOTCOST + COST;
13 FILE NORMAL1;
14 PUT I COST TOTCOST;
15 END;
16 END;
17 PROC PRINT;
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Program V! - This program simulates production lot data
using the data from Program V or VII of Appendix A. A 4x6
matrix is set up to divide each production run into four
lots, with the following lot data in each matrix:
cumulative units, cumulative cost, lot cost, true lot
midpoint, average unit cost per lot, and lot size. One
hundred such matrices are generated.

1 DATA TWO;
2 INFILE NORMAL1;
3 INPUT N1-N1755;
4 ARRAY NUM[1755] N1-N1755;
5 ARRAY COSTE210] YYl-YY585;
6 ARRAY LOT(4,6] LI-L24;
7 ARRAY TOTCOST[585] TC1-TC585;
8 DO I = 1 TO 585;
9 COSTEII = NUMEI * 3 -1;

10 TOTCOST[I] = NUM[I * 31;
11 END;
12 LOT(1,11 = 1;
13 LOT[1,2] = TOTCOSTVi];
14 LOT[1,3] = TOTCOST[1],
15 LOT[1,41 = 0;
16 B = LOG(.8)/LOG(2);
17 DO I = 1 TO LOT[1,1];
18 DUM = LOT[1,4] + (I**B);
19 LOT[1,4] = DUM;
20 END;
21 LOT[1,4] = (LOT[1,4]/LOT[1,1])**(1/B);
22 LOT[1,5] = LOT[1,3]/TEMP;
23 LOT[1,6] = LOT(I,1];
24 LOT(2,1] = 9;
25 LOT[2,2] = TOTCOST[LOT[2,1]];
26 LOT(2,3] = LT[2,2] - LOT(1,2];
27 LOT[2,4] = 0;
28 Z = LOT[2,1] - LOT[1,1];
29 DO I = 1 TO Z;
30 DUM = LOT(2,4] + ((I + LOT[I,1])**B);
31 LOT[2,4] = DUM;
32 END;
33 LOT[2,4] = (LOT[2,41/Z)**(l/B);
34 LOT[2,5] = LOT[2,3]/9;
35 LOT[2,61 = LOT(2,1] - LOT[1,1];
36 LOT[3,1] = 73;
37 LOT[3,2] = TOTCOST[LOT[3,1]];
38 LOT[3,3] = LOT[3,2] - LOT[2,2];
39 LOT[3,4] = 0;
40 Z = LOT[3,1] - LOT(2,1];
41 DO I = 1 TO Z;
42 DUM = LOT(3,4] + ((I + LOT(2,1])**B);
43 LOT[3,4] = DUM;
44 END;
45 LOT[3,43 = (LOT[3,4]/Z)**(1/B);
46 LOT[3,5] = LOT[3,3]/73;
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47 LOT(3,6] LOTt3,31] - LOT(2,1];

48 LOTf4,1] 585;
49 LOT[4,21 =TOTCOST[LOT[4,1]];

50 LOT[4,31 = LOT[4,21 - LOTE.3,2];

51 LOT[4,4] 0;
52 Z = LOT(4,1] - LOT[3,1];
53 DO I I TO Z;

54 DUM LOTE4,4] + ((I + LOT[3,11)**B);

55 LOTE4,41 = DUM;

56 END;

57 LOT[4,4] = (LOT[4,4]/z)**(l/B);

58 LOT[4,5] L0T'L4,31/ 5 8 5 ;

59 LOT[4,61 = LOT[4,1] - LOT[3,11;

60 FILE ULOTGEN3;
61 DO I = 1 TO 4;

62 PUT LOT(I,l1 LOTfiI,2] LOTEI,3] LOT(1i,41
LOT[T,5] LOT(I,61;

63 END;
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Program VII - This program simulates unit cost learning
curve data in standard form, given a learning curve slope of
80 percent, a first unit cost of 25,000, and an additive
error term equal to 500 or two percent of the first unit
cost. One hundred producticn runs of 585 units per
production run are generated. The output is unit number,
cost per unit, and cumulative total cost.

1 DATA ONE;
2 A = 25000;
3 B = LOG(.8)/LOG(21;
4 C = 500;
5 DO J = 1 TO 100;
6 TOTCOST = 0;
7 DO I = 1 TO 585;
8 X =I;
9 Z RANNOR(1111);

10 Y = A * (X** B) + (C *Z);
11 COST =Y;
12 TOTCOST = TOTCOST + COST;
13 FILE NORMAL;
14 PUT I COST TOTCOST;
15 END;
16 END;
17 PROC PRINT;
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APPENDIX B

Sample SAS Programs for Data Analysis

These programs were written and run using the VMS
Version of SAS, Release 5.16. Reference SAS Institute
Inc. (1985).
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Program I - This program performs OLSBF on the data

generated in Programs II, III, and IV of Appendix A (on line
4 the column LOTSZ does not exist in Program II of Appendix
A, thus it would be deleted from the program). The data
used is heuristic lot plot point or true lot midpoint (LPP),
and the average unit cost per lot (AVUNCST). This data is
transformed using the natural logarithm function (LOG) and
then the technique of OLS fits the data. A permanent SAS
data file is created which contains the intercept and slope
coefficient data which will be used later. A list file is
also generated which contains ANOVA tables for each

production run (100).

1 LIBNAME MINE '[TTRACHT]';
2 DATA THREE;
3 INFILE ULOTGEN;
4 INPUT CUMX TOTY LOTCOST LPP AVUNCST LOTSZ;
5 INFILE PRODRUN;
6 INPUT PRDRUN;
7 LNLPP = LOG(LPP);
8 LNAVUCST = LOG(AVUNCST);
9 PROC REG OUTEST = MINE.PARAMS;

10 MODEL LNAVUCST = LNLPP;
11 BY PRDRUN;
12 PROC PRINT;

Program II - This program performs WLSBF on the data

generated In Programs II and III of Appendix A. This
piogrr. --as written by Avngcr. Here the X, which is the
weights, is equal to CUMX. The process and the output is
the same as above program.

1 LIBNAME MINE '[TTRACHT]';
2 DATA THREE;
3 HOLDX = 210;
4 INFILE ULOTGEN;
5 INPUT CUMX TOTY LOTCOST LPP AVUNCST LOTSZ;
6 INFILE PRODRUN;
7 INPUT PRDRUN;
8 LNLPP .= LOG(LPP);
9 LNAVUCST = LOG(AVUNCST);

10 IF HOLDX = 210 THEN X = CUMX;
11 ELSE X = CUMX - HOLDX;
12 PROC REG OUTEST = MINE.WPARAMS;
13 MODEL LNAVUCST = LNLPP;
14 WEIGHT X;
15 BY PRDRUN;
16 PROC PRINT;
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Program III - This program take the slope coefficient
(LNLPP) and first unit cost parameter (INTERCEP) from
Programs I, II, and V, transforms them back to their
standard state using the antilogarithm function. By
tranforming each parameter the arithmetic mean of these
parameters can be calculated, which is what PROC MEANS MEAN
accomplishes for the variables SLOPE and EXPINTER. Also
calculated is the geometric mean of the INTERCEP and LNLPP
variables.

1 LIBNAME SDAT '[TTRACHT]';
2 DATA FOUR;
3 SET SDAT.PARAMS;
4 EXPINTER = EXP(INTERCEP);
5 SLOPE = EXP(LNLPP * LOG(2));
6 PROC MEANS MEAN;
7 VAR INTERCEP LNLPP EXPINTER SLOPE;
8 PROC PRINT;
9 VAR INTERCEP LNLPP EXINTER SLOPE;

Program IV - This program uses the first unit cost and slope
coefficient data, in it's logarithmic state, from Programs
I, II, and V. The PROC UNIVARIATE PLOT NORMAL statement is
then used to provide information on the geometric mean of
the first unit cost parameter, the range of the parameters
sectioned by Ist-4th quartiles, and the maximum and minimum
values of the parameters. Additional data such as normality
plots, and the Kolomogorov-Smirnov D-statistic are also
provided, but in these cases were not used.

1 LIBNAME SDAT '(TTRACHT];
2 DATA FIVE;
3 SET SDAT.PARAMS;
4 PROC SORT;
5 BY LNLPP;
6 PROC UNIVARIATE PLOT NORMAL;
7 VAR INTERCEP LNLPP;
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Pro-Aram V - This program performs WLSBF on the data
g,-i.rated in Programs II and III of Appendix A. The one
difference between this program and Program II of Appendix B
is the weighting scheme. Line 9 sets X equal to lot size
and line 12 weights by X. The data regressed is the natural
logarithm of either the heuristic lot plot point or the true
lot midpoint, and average unit cost per lot. A permanent
SAS data file is created which contains the intercept and
slope coefficient data. A list file is also generated which
contains ANOVA tables for each production run (100).

1 LIBNAME MINE I[TTRACHT]';
2 DATA THREE;
3 INFILE ULOTGEN;
4 INPUT CUMX TOTY LOTCOST LPP AVUNCST LOTSZ;
5 INFILE PRODRUN;
6 INPUT PRDRUN;
7 LNLPP = LOG(LPP);
8 LNAVUCST = LOG(AVUNCST);
9 X = LOTSZ;

10 PROC REG OUTEST = MINE.WPARAMS;
11 MODEL LNAVUCST = LNLPP;
12 WEIGHT X;
13 BY PRDRUN;
14 PROC PRINT;
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Program VI - This program uses the data generated in Program
VI of Appendix A. The data is divided into four separate
data sets by lot size. The PROC UNIVARIATE PLOT NORMAL
statement provides detailed information on the distribution
of the variables. In this case the variables are average
unit cost per lot (X5) and the natural logarithm form of the
same variable (LOGX5). This is accomplished for data
grouped by lot sizes 1, 8, 64, and 512.

1 DATA SIX;
2 INFILE ULOTGEN3;
3 INPUT X1 X2 X3 X4 X5 X6;
4 LOGX5 = LOG(X5);
5 DATA LOTSZI;
6 SET SIX;
7 IF X6 = 1;
8 PROC UNIVARIATE PLOT NORMAL;
9 VAR X5 LOGX5;

10 PROC PRINT;
11 DATA LOTSZ8;
12 SET SIX;
13 IF X6 = 8;
14 PROC UNIVARIATE PLOT NORMAL;
15 VAR X5 LOGX5;
16 PROC PRINT;
17 DATA LOTSZ64;
i8 SET SIX;
19 IF X6 = 64;
20 PROC UNIVARIATE PLOT NORMAL;
21 VAR X5 LOGX5;
22 PROC PRINT;
23 DATA LOTSZ512;
24 SET SIX;
25 IF X6 = 512;
26 PROC UNIVARIATE PLOT NORNAL;
27 VAR X5 LOGX5;
28 PROC PRINT;
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Program VII - This program uses the data generated in
Program VI of Appendix A. A new variable, the natural
logarithm of the average unit cost per lot (LOGX5), is
formed. The data is then sorted by lot size (X6), then
using the Proc Means Var statement the variance of both X5
and LOGX5 are calculated. This provides the variance of
both the standard and tranformed state of average unit cost
per lot for lot sizes of 1, 8, 64, and 512.

1 DATA SEVEN;
2 INFILE ULOTGEN3;
3 INPUT Xl X2 X3 X4 X5 X6;
4 LOGX5 = LOG(X5);
5 PROC SORT;
6 BY X6;
7 PROC MEANS VAR;
8 VAR X5 LOGX5;
9 BY X6;

10 PROC PRINT;
11 VAR X5 LOGX5;
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